Skip to main content
Log in

Influence of mill modulus control gain on vibration in hot rolling mills

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The rolling mill vibration is characterized by the coupling effects among mechanical, electrical, hydraulic and interfacial subsystems. The influence of the mill modulus control gain in automatic gauge control on the vibration in hot rolling mills was investigated. Firstly, an experiment related to the mill modulus control gain was carried out in the hot rolling mill process, and it was found that the rolling mill vibration increases with the mill modulus control gain. Then, based on the Sims rolling force method, the coupling dynamic model was established to explain this phenomenon. Finally, the influence of mill modulus control gain on the vibration was analyzed numerically on the basis of the coupling dynamic model. Moreover, the agreement between the experimental results and the simulation results was confirmed and the measure reducing the mill modulus control gain was obtained to relieve mill vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y. Peng, M. Zhang, J.L. Sun, Y. Zhang, ISIJ Int. 57 (2017) 1567–1576.

    Article  Google Scholar 

  2. Z.Y. Gao, Y. Zang, L.Q. Zeng, J. Mech. Eng. 51 (2015) No. 16, 87–105.

    Article  Google Scholar 

  3. M.R. Niroomand, M.R. Forouzan, M. Salimi, ISIJ Int. 55 (2015) 637–646.

    Article  Google Scholar 

  4. X.Q. Yan, Z.H. Sun, W. Chen, Ironmak. Steelmak. 38 (2011) 309–313.

    Article  Google Scholar 

  5. J. Tlusty, G. Chandra, S. Critchley, D. Paton, CIRP Annals 31 (1982) 195–199.

    Article  Google Scholar 

  6. I.S. Yun, W.R.D. Wilson, K.F. Ehmann, J. Manuf. Sci. Eng. 120 (1998) 330–336.

    Article  Google Scholar 

  7. I.S. Yun, K.F. Ehmann, W.R.D. Wilson, J. Manuf. Sci. Eng. 120 (1998) 337–342.

    Article  Google Scholar 

  8. I.S. Yun, K.F. Ehmann, W.R.D. Wilson, J. Manuf. Sci. Eng. 120 (1998) 343–348.

    Article  Google Scholar 

  9. P.H. Hu, K.F. Ehmann, Int. J. Mach. Tools Manufact. 40 (2000) 1–19.

    Article  Google Scholar 

  10. P.H. Hu, H. Zhao, K.F. Ehmann, PI Mech. Eng. BJ Eng. 220 (2006) 1267–1277.

    Google Scholar 

  11. P.H. Hu, H. Zhao, K.F. Ehmann, PI Mech. Eng. BJ Eng. 220 (2006) 1279–1292.

    Google Scholar 

  12. P.H. Hu, H. Zhao, K.F. Ehmann, PI Mech. Eng. BJ Eng. 220 (2006) 1293–1303.

    Google Scholar 

  13. H.P. Tang, D.Y. Wang, J. Zhong, J. Mater. Process. Technol. 129 (2002) 294–298.

    Article  Google Scholar 

  14. Y.F. Zhang, X.Q. Yan, Q.H. Lin, Chin. J. Mech. Eng. 29 (2016) 180–187.

    Article  Google Scholar 

  15. Y.F. Zhang, X.Q. Yan, Q.H. Ling, Engineering Mechanics 32 (2015) No. 1, 213–217.

    Google Scholar 

  16. S. Liu, B. Sun, S. Zhao, J. Li, W. Zhang, Steel Res Int. 86 (2015) 984–992.

    Article  Google Scholar 

  17. S. Liu, H. Ai, B. Sun, S. Li, Z. Meng, Chaos, Solitons and Fractals 98 (2017) 101–108.

    Article  Google Scholar 

  18. X.Q. Yan, J. Mech. Eng. 47 (2011) No. 17, 61–65.

    Article  Google Scholar 

  19. X. Yang, C.N. Tong, J. Dyn. Sys. Meas. Control 134 (2012) 041001.

    Article  Google Scholar 

  20. X. Yang, C.N. Tong, G.F. Yue, J.J. Meng, J. Iron Steel Res. Int. 17 (2010) No. 12, 30–34.

    Article  Google Scholar 

  21. Q.H. Ling, Q.C. Zhao, X. Wang, X.F. Wang, Journal of Vibration and Shock 36 (2017) No. 16, 73–78.

    Google Scholar 

  22. Y. Gao, B. Jin, H. Zhang, Energy Educ. Sci. Technol. 31 (2013) 2623–2626.

    Google Scholar 

  23. R.B. Sims, Proc. I. Mech. Eng. 168 (1954) 191–200.

    Article  Google Scholar 

  24. M. Ataka, ISIJ Int. 55 (2015) 89–102.

    Article  Google Scholar 

  25. J. Zou, L. Xu, Tandem mill vibration control, Metallurgical Industry Press, Beijing, China, 1998.

    Google Scholar 

  26. M. Mosayebi, F. Zarrinkolah, K. Farmanesh, Int. J. Adv. Manuf. Technol. 91 (2017) 4359–4369.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-qiang Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Jb., Wang, Xx. & Yan, Xq. Influence of mill modulus control gain on vibration in hot rolling mills. J. Iron Steel Res. Int. 27, 528–536 (2020). https://doi.org/10.1007/s42243-020-00375-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00375-3

Keywords

Navigation