Skip to main content

Advertisement

Log in

Numerical simulation of 3D electromagnetic–thermal phenomena in an induction heated slab

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A mathematical model was developed to get an insight into 3D electromagnetic–thermal phenomena in an induction heated steel slab with a large width/thickness ratio by solving a fully coupled Maxwell equations and energy conservation equation. The spatial heat radiation between the slab surface and the refractory wall in an induction furnace was considered. The electromagnetic induction and temperature distribution features inside the slab with time evolution were described. The effects of electromagnetic induction parameters, thermal conductivity of the material and process parameters on the induction heating process were theoretically examined. Numerical results show that the spatial distribution of induction heat generation inside the slab is non-uniform. The high work frequency and the low heat conductivity of slab increase the non-uniformity of slab induction heating process. The radiative heat loss and heat transfer between the slab and the metal parts used for holding the slab have an important effect on the slab surface temperature. It is necessary to separately control the current input in the multi-layer coil windings along the height direction of furnace and adopt the multi-step heating strategies with time evolution to improve the homogenization of the slab temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K.F. Wang, S. Chandrasekar, H.T.Y. Yang, J. Mater. Eng. Perform. 1 (1992) 97–112.

    Article  Google Scholar 

  2. S.C. Chen, H.S. Peng, J.A. Chang, W.R. Jong, Int. Comm. Heat Mass Transfer 31 (2004) 971–980.

    Article  Google Scholar 

  3. R. Naar, F. Bay, Appl. Math. Model. 37 (2013) 2074–2085.

    Article  MathSciNet  Google Scholar 

  4. G. Djambazov, V. Bojarevics, K. Pericleous, N. Croft, Appl. Math. Model. 39 (2015) 4733–4745.

    Article  MathSciNet  Google Scholar 

  5. H.M. Wang, G.R. Li, J. Iron Steel Res. Int. 17 (2010) No. 7, 13–18.

    Article  Google Scholar 

  6. N. Di Luozzo, M. Fontana, B. Arcondo, J. Alloy. Compd. 536 (2012) No. S1, S564–S568.

    Article  Google Scholar 

  7. Y. Han, E.L. Yu, H.L. Zhang, D.C. Huang, Appl. Therm. Eng. 51 (2013) 212–217.

    Article  Google Scholar 

  8. D. Hömberg, Nonlinear Anal. Real World Appl. 5 (2004) 55–90.

    Article  MathSciNet  Google Scholar 

  9. F. Cajner, B. Smoljan, D. Landek, J. Mater. Process. Technol. 157–158 (2004) 55–60.

    Article  Google Scholar 

  10. D. Coupard, T. Palin-luc, P. Bristiel, V. Ji, C. Dumas, Mater. Sci. Eng. A 487 (2008) 328–339.

    Article  Google Scholar 

  11. B.J. Yang, A. Hattiangadi, W.Z. Li, G.F. Zhou, T.E. McGreevy, Mater. Sci. Eng. A 527 (2010) 2978–2984.

    Article  Google Scholar 

  12. H. Kawaguchi, M. Enokizono, T. Todaka, J. Mater. Process. Technol. 161 (2005) 193–198.

    Article  Google Scholar 

  13. A. Zabett, S.H. Mohamadi Azghandi, Mater. Des. 36 (2012) 415–420.

    Article  Google Scholar 

  14. M.S. Huang, Y.L. Huang, Int. J. Heat Mass Transfer 53 (2010) 2414–2423.

    Article  Google Scholar 

  15. K.H. Cho, Int. J. Therm. Sci. 60 (2012) 195–204.

    Article  Google Scholar 

  16. A. Kachel, R. Przyłucki, J. Achiev. Mater. Manuf. Eng. 22 (2007) 53–56.

    Google Scholar 

  17. H. Jiang, T.H. Nguyen, M. Prud’homme, J. Mater. Process. Technol. 189 (2007) 182–191.

    Article  Google Scholar 

  18. I. Magnabosco, P. Ferro, A. Tiziani, F. Bonollo, Comp. Mater. Sci. 35 (2006) 98–106.

    Article  Google Scholar 

  19. R.B. Mei, C.S. Li, B. Han, X.H. Liu Mater. Sci. Forum 575–578 (2008) 282–287.

    Article  Google Scholar 

  20. M.H. Tavakoli, H. Karbaschi, F. Samavat, Math. Comput. Modell. 54 (2011) 50–58.

    Article  Google Scholar 

  21. M. Kranjc, A. Zupanic, D. Miklavcic, T. Jarm, Int. J. Heat Mass Transfer 53 (2010) 3585–3591.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-ping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Hp., Wang, Xh., Si, Ly. et al. Numerical simulation of 3D electromagnetic–thermal phenomena in an induction heated slab. J. Iron Steel Res. Int. 27, 420–432 (2020). https://doi.org/10.1007/s42243-020-00362-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00362-8

Keywords

Navigation