Skip to main content
Log in

Fundamental mechanism of effects of MgO on sinter strength

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

MgO-containing flux may have a series of effects on the quality of sinter and performances of the blast furnace. Thus, the fundamental mechanism of the effects of MgO on the sinter strength was investigated. Both the chemical reagent and industrial flux were used for preparing the specimens. The experimental results show that the sinter strength decreases with MgO addition. There are three reasons for it. The first reason is diffusion rate. Almost all of the CaO may react with Fe2O3 and generate CaO·Fe2O3, but most of MgO cannot react with Fe2O3, and it still remains in the state of original minerals. The diffusion rate of MgO in iron oxide is only 17.51 μm/min in 30 min. The second reason is the fluidity and ability to generate liquid phase. In the case of Fe2O3 mixed with CaO, there is some liquid phase formed above 1200 °C, while in the case of Fe2O3 mixed with MgO, even at 1200 and 1220 °C, there is still no liquid phase. The third reason is self-strength. In the case of industrial flux, the compression strength of the specimens made of Fe2O3 and limestone is 0.52 and 0.71 kN at 1150 and 1180 °C, respectively, while that of the specimens made of Fe2O3 and magnesite is 0.48 and 0.56 kN, respectively. Therefore, the fundamental mechanism of the effects of MgO additive on sinter strength can be better understood based on the diffusion rate of MgO in iron oxides, the fluidity of liquid phase, and the self-strength of bonding phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.B. Xu, D.Q. Cang, J. Iron Steel Res. Int. 17 (2010) No. 3, 1–7.

    Article  Google Scholar 

  2. X.J. Liu, S.M. Liao, Z.H. Rao, G. Liu, J. Iron Steel Res. Int. 25 (2018) 524–538.

    Article  Google Scholar 

  3. X.H. Fan, Y.N. Wang, M. Gan, Z.Y. Ji, Y. Zhou, X.L. Chen, J. Iron Steel Res. Int. 26 (2019) 558–566.

    Article  Google Scholar 

  4. F. Zhang, S.L. An, Y.C. Wang, G.P. Luo, X.L. Song, J. Iron Steel Res. Int. 22 (2015) 213–218.

    Article  Google Scholar 

  5. K. Sunahara, K. Nakano, M. Hoshi, T. Inada, S. Komatsu, T. Yamamoto, ISIJ Int. 48 (2008) 420–429.

    Article  Google Scholar 

  6. F.M. Shen, X. Jiang, G.S. Wu, G. Wei, X.G. Li, Y.S. Shen, ISIJ Int. 46 (2006) 65–69.

    Article  Google Scholar 

  7. M.K. Kalenga, A.M. Garbers-Craig, J. S. Afr. Inst. Min. Metall. 110 (2010) 447–456.

    Google Scholar 

  8. L.H. Hsieh, ISIJ Int. 45 (2005) 551–559.

    Article  Google Scholar 

  9. K. Higuchi, M. Naito, M. Nakano, Y. Takamoto, ISIJ Int. 44 (2004) 2057–2066.

    Article  Google Scholar 

  10. X. Jiang, L. Zhang, G.S. Li, M.F. Jin, Z. Wang, Y.S. Shen, F.M. Shen, J. Iron Steel Res. Int. 16 (2009) No. S2-1, 253–257.

    Google Scholar 

  11. U.S. Yadav, B.D. Pandey, B.K. Das, D.N. Jena, Ironmak. Steelmak. 29 (2002) 91–95.

    Article  Google Scholar 

  12. T. Paananen, Steel Res. Int. 78 (2007) 91–95.

    Article  Google Scholar 

  13. K. Higuchi, T. Tanaka, T. Sato, ISIJ Int. 47 (2007) 669–678.

    Article  Google Scholar 

  14. N. Taguchi, T. Otomo, Y. Omori, ISIJ Int. 30 (1990) 281–289.

    Article  Google Scholar 

  15. H. Tang, X. Fu, Y. Qin, T. Qi, J. S. Afr. Inst. Min. Metall. 117 (2017) 387–395.

    Article  Google Scholar 

  16. M. Nakano, M. Naito, K. Higuchi, K. Morimoto, ISIJ Int. 44 (2004) 2079–2085.

    Article  Google Scholar 

  17. M.S. Zhou, S.F. Han, L. Wang, X. Jiang, L.B. Xu, L.W. Zhai, J. Liu, H. Zhang, X.L. Qin, F.M. Shen, Steel Res. Int. 86 (2015) 1242–1251.

    Article  Google Scholar 

  18. T. Umadevi, A.K. Roy, P.C. Mahapatra, M. Prabhu, M. Ranjan, Steel Res. Int. 80 (2009) 800–807.

    Google Scholar 

  19. J. Fang, C. Li, X.J. Wang, R.X. Ren, Steel Res. Int. 79 (2008) 5–10.

    Article  Google Scholar 

  20. R.R. Wei, X.W. Lv, Z.W. Yue, S.L. Xiang, Metall. Mater. Trans. B 48 (2017) 733–742.

    Article  Google Scholar 

  21. B. Yu, X.W. Lv, S.L. Xiang, C.G. Bai, J.Q. Yin, ISIJ Int. 55 (2015) 1558–1564.

    Article  Google Scholar 

  22. G.P. Luo, S.L. Wu, G.J. Zhang, Y.C. Wang, J. Iron Steel Res. Int. 20 (2013) No. 3, 18–23.

    Article  Google Scholar 

  23. F.M. Shen, G.S. Li, Z.M. Ding, L. Mu, J. Iron Steel Res. Int. 16 (2009) No. 3, 1–5.

    Article  Google Scholar 

  24. S.L. Wu, G.L. Zhang, Steel Res. Int. 86 (2015) 1014–1021.

    Article  Google Scholar 

  25. X.B. Huang, K.Q. Fan, B.D. Sun, H.C. Lin, J.Y. Jia, J. Iron Steel Res. Int. 13 (2006) No. 2, 69–72.

    Article  Google Scholar 

  26. J. Muller, T.L. de Vries, B.A. Dippenaar, J.C. Vreugdenburg, J. S. Afr. Inst. Min. Metall. 115 (2015) 409–417.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the contributions of associates and colleagues at Northeastern University of China and Meishan Steel of China. Also, the financial supports of the National Natural Science Foundation of China (NSFC 51874080, 51774071, and 51604069) are appreciated very much.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Hs., Shen, Fm., Jiang, X. et al. Fundamental mechanism of effects of MgO on sinter strength. J. Iron Steel Res. Int. 26, 1171–1177 (2019). https://doi.org/10.1007/s42243-019-00331-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00331-w

Keywords

Navigation