Skip to main content
Log in

Effect of drawing speed on microstructure distribution and drawability in twinning-induced plasticity steel during wire drawing

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The effect of drawing speed on temperature rise and microstructure distribution in twinning-induced plasticity (TWIP) steel during wire drawing has been investigated to improve drawability for wire rod applications. Although wire drawing process is performed at room temperature, heat is generated due to the plastic deformation and friction at the wire–die interface. The steel wires subjected to the low drawing speed (LD) of 0.5 m/min and the high drawing speed (HD) of 5.0 m/min were analyzed using the numerical simulation and electron backscatter diffraction techniques. Interestingly, the specimens subjected to the HD had a higher drawability by about 18% compared to the LD, which is totally different from the general behavior of plain carbon pearlitic steels. The LD wire had uniform temperature distribution along the radial direction during wire drawing. In contrast, the HD wire had a temperature gradient along the radial direction due to the higher frictional effect at surface: the minimum temperature of 58 °C at center area and the maximum temperature of 143 °C at surface area. The higher stacking fault energy of HD wire at the surface area due to the high temperature rise retarded twinning rate, resulting in the prevention of fast exhaustion in ductility in comparison with the LD wires since the earlier depletion of twins at surface area is known as the main reason for the fracture of TWIP steel during wire drawing. Consequently, HD process delayed the fracture strain of wire and increased the uniformity of microstructure and mechanical properties along the radial direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Namimura, M. Fujita, N. Ibaraki, Y. Oki, Kobe Steel Eng. Rep. 54 (2004) 16–20.

    Google Scholar 

  2. J.K. Hwang, I.C. Yi, I.H. Son, J.Y. Yoo, B. Kim, A. Zargaran, N.J. Kim, Mater. Sci. Eng. A 644 (2015) 41–52.

    Google Scholar 

  3. Y.S. Chun, J. Lee, C.M. Bae, K.T. Prak, C.S. Lee, Scripta Mater. 67 (2012) 681–684.

    Google Scholar 

  4. K.H. So, J.S. Kim, Y.S. Chun, K.T. Park, Y.K. Lee, C.S. Lee, ISIJ Int. 49 (2009) 1952–1959.

    Google Scholar 

  5. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid State Mater. Sci. 15 (2011) 141–168.

    Google Scholar 

  6. O. Grassel, L. Kruger, G. Frommeyer, L.W. Meyer, Int. J. Plast. 16 (2000) 1391–1409.

    Google Scholar 

  7. D. Barbier, N. Gey, S. Allain, N. Bozzolo, M. Humbert, Mater. Sci. Eng. A 500 (2009) 196–206.

    Google Scholar 

  8. Y.N. Dastur, W.C. Leslie, Metall. Trans. A 12 (1981) 749–759.

    Google Scholar 

  9. O. Bouaziz, N. Guelton, Mater. Sci. Eng. A 319–321 (2001) 246–249.

    Google Scholar 

  10. J.E. Jin, Y.K. Lee, Mater. Sci. Eng. A 527 (2009) 157–161.

    Google Scholar 

  11. H. Idrissi, K. Renard, D. Schryvers, P.J. Jacques, Scripta Mater. 63 (2010) 961–964.

    Google Scholar 

  12. E.I. Galindo-Nava, P.E.J. Rivera-Diaz-del-Castillo, Acta Mater. 128 (2017) 120–134.

    Google Scholar 

  13. B.C. De Cooman, Y. Estrin, S.K. Kim, Acta Mater. 142 (2018) 283–362.

    Google Scholar 

  14. O.A. Zambrano, J. Mater. Sci. 53 (2018) 14003–14062.

    Google Scholar 

  15. J.K. Hwang, J. Mater. Sci. 54 (2019) 8743–8759.

    Google Scholar 

  16. R.N. Wright, Wire technology: process engineering and metallurgy, Butterworth-Heinemann, Elsevier, USA, 2011.

    Google Scholar 

  17. S. Curtze, V.T. Kuokkala, A. Oikari, J. Talonen, H. Hannien, Acta Mater. 59 (2011) 1068–1076.

    Google Scholar 

  18. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387–389 (2004) 158–162.

    Google Scholar 

  19. A. Saeed-Akbari, J. Imlau, U. Prahl, W. Bleck, Metall. Mater. Trans. A 40 (2009) 3076–3090.

    Google Scholar 

  20. S. Curtze, V.T. Kuokkala, Acta Mater. 58 (2010) 5129–5141.

    Google Scholar 

  21. J.K. Hwang, Mater. Sci. Eng. A 711 (2018) 156–164.

    Google Scholar 

  22. T. Lee, M. Koyama, K. Tsuzaki, Y.H. Lee, C.S. Lee, Mater. Lett. 75 (2012) 169–171.

    Google Scholar 

  23. H.M. Baek, S.K. Hwang, H.S. Joo, Y.T. Im, I.H. Son, C.M. Bae, Mater. Des. 62 (2014) 137–148.

    Google Scholar 

  24. U. Chakkingal, A.B. Suriadi, P.F. Thomson, Mater. Sci. Eng. A 266 (1999) 241–249.

    Google Scholar 

  25. A.G. Atkins, R.M. Caddell, Int. J. Mech. Sci. 10 (1968) 15–28.

    Google Scholar 

  26. R.K. Chin, P.S. Stelf, Int. J. Mach. Tools Manuf. 35 (1995) 1087–1098.

    Google Scholar 

  27. M.T.P. Aguilar, E.C.S. Correa, R.F. Silva, P.R. Cetlin, J. Mater. Process. Technol. 125–126 (2002) 323–325.

    Google Scholar 

  28. H.S. Lin, Y.C. Hsu, C.C. Keh, J. Mater. Process. Technol. 201 (2008) 128–132.

    Google Scholar 

  29. J.K. Hwang, I.H. Son, J.Y. Yoo, A. Zargaran, N.J. Kim, Met. Mater. Int. 21 (2015) 815–822.

    Google Scholar 

  30. H. Nagashima, K. Yoshida, J. AMME 70 (2015) 29–35.

    Google Scholar 

  31. J.K. Hwang, Mater. Sci. Eng. A 737 (2018) 188–197.

    Google Scholar 

  32. A. Haddi, A. Imad, G. Vega, Mater. Des. 32 (2011) 4310–4315.

    Google Scholar 

  33. A. El-Domiaty, S.Z. Kassab, J. Mater. Process. Technol. 83 (1998) 72–83.

    Google Scholar 

  34. G. Vega, A. Haddi, A. Imad, Int. J. Mater. Form 2 (2009) 229–232.

    Google Scholar 

  35. M. Suliga, R. Kruzel, T. Garstka, J. Gazdowicz, Metalurgija 54 (2015) 161–164.

    Google Scholar 

  36. J.W. Pilarczyk, J. Markowski, H. Dyja, B. Golis, Wire J. Int. 37 (2004) 118–123.

    Google Scholar 

  37. C.S. Cetinarslan, A. Guzey, Mater. Technol. 47 (2013) 245–252.

    Google Scholar 

  38. S.K. Lee, D.C. Ko, B.M. Kim, Mater. Des. 30 (2009) 2919–2927.

    Google Scholar 

  39. I. Nemec, B. Golis, J.W. Pilarczyk, R. Budzik, W. Waszkielewicz, Wire J. Int. 40 (2007) 63–68.

    Google Scholar 

  40. A. Dumay, J.P. Chateau, S. Allain, S. Migot, O. Bouaziz, Mater. Sci. Eng. A 483–484 (2008) 184–187.

    Google Scholar 

  41. M. Ghasri-Khouzani, J.R. McDermid, Mater. Sci. Eng. A 621 (2015) 118–127.

    Google Scholar 

  42. J.K. Hwang, Appl. Therm. Eng. 142 (2018) 311–320.

    Google Scholar 

  43. J.E. Jin, Y.K. Lee, Acta Mater. 60 (2012) 1680–1688.

    Google Scholar 

  44. S.K. Lee, S.B. Lee, B.M. Kim, J. Mater. Process. Technol. 210 (2010) 776–783.

    Google Scholar 

  45. A.A. Saleh, E.V. Pereloma, A.A. Gazder, Mater. Sci. Eng. A 528 (2011) 4537–4549.

    Google Scholar 

  46. O.A. Zambrano, J. Valdes, Y. Aguilar, J.J. Coronado, S.A. Rodriguez, R.E. Loge, Mater. Sci. Eng. A 689 (2017) 269–285.

    Google Scholar 

  47. A.J. Schwartz, M. Kumar, B.L. Adams, D.P. Field, Electron backscatter diffraction in materials science, 2nd ed., Springer, Boston, USA, 2009.

    Google Scholar 

  48. R. Badji, T. Chauveau, B. Bacroix, Mater. Sci. Eng. A 575 (2013) 94–103.

    Google Scholar 

  49. J. Park, M. Kang, S.S. Sohn, S.H. Kim, K.S. Kim, N.J. Kim, S. Lee, Mater. Sci. Eng. A 684 (2017) 54–63.

    Google Scholar 

  50. Z.W. Wang, Y.B. Wang, X.Z. Liao, Y.H. Zhao, E.J. Lavemia, Y.T. Zhu, Z. Horita, T.G. Langdon, Scripta Mater. 60 (2009) 52–55.

    Google Scholar 

  51. E.G. Astafurova, M.S. Tukeeva, G.G. Maier, E.V. Melnikov, H.J. Maier, Mater. Sci. Eng. A 604 (2014) 166–175.

    Google Scholar 

  52. E. Bayraktar, F.A. Khalid, C. Levaillant, J. Mater. Process. Technol. 147 (2004) 145–154.

    Google Scholar 

  53. H.K. Yang, Z.J. Zhang, F.Y. Dong, Q.Q. Duan, Z.F. Zhang, Mater. Sci. Eng. A 607 (2014) 551–558.

    Google Scholar 

  54. F.C. Liu, Z.N. Yang, C.L. Zheng, F.C. Zhang, Scripta Mater. 66 (2012) 431–434.

    Google Scholar 

  55. Y.F. Shen, N. Jia, R.D.K. Misra, L. Zuo, Acta Mater. 103 (2016) 229–242.

    Google Scholar 

  56. G.H. Hasani, R. Mahmudi, A. Karimi-Taheri, Int. J. Mater. Form 3 (2010) 59–64.

    Google Scholar 

  57. C. Moon, N. Kim, J. Mech. Sci. Technol. 26 (2012) 2903–2911.

    Google Scholar 

  58. R.W. Neu, Materials Performance and Characterization 2 (2013) 244–284.

    Google Scholar 

  59. E. Felder, C. Levrau, M. Mantel, N.G. Truong Dinh, Wear 286–287 (2012) 27–34.

    Google Scholar 

  60. K.G. Chin, C.Y. Kang, S.Y. Shin, S. Hong, S. Lee, H.S. Kim, K. Kim, N.J. Kim, Mater. Sci. Eng. A 528 (2011) 2922–2928.

    Google Scholar 

  61. K. Renard, P.J. Jacques, Mater. Sci. Eng. A 542 (2012) 8–14.

    Google Scholar 

  62. S.K. Lee, D.W. Kim, M.S. Jeong, B.M. Kim, Mater. Des. 34 (2012) 363–371.

    Google Scholar 

  63. H.K. Yang, Y.Z. Tian, Z.J. Zhang, C.L. Yang, P. Zhang, Z.F. Zhang, Metall. Mater. Trans. A 48 (2017) 4458–4462.

    Google Scholar 

  64. H.Y. Yu, S.M. Lee, J.H. Nam, S.J. Lee, D. Fabregue, M.H. Park, N. Tsuji, Y.K. Lee, Acta Mater. 131 (2017) 435–444.

    Google Scholar 

  65. M. Koyama, Y. Shimomura, A. Chiba, E. Akiyama, K. Tsuzaki, Scripta Mater. 141 (2017) 20–23.

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Research Foundation of Korea (NRF-2018R1D1A1B07050103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joong-ki Hwang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, Jk. Effect of drawing speed on microstructure distribution and drawability in twinning-induced plasticity steel during wire drawing. J. Iron Steel Res. Int. 27, 577–587 (2020). https://doi.org/10.1007/s42243-019-00328-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00328-5

Keywords

Navigation