Skip to main content
Log in

Critical assessment of mixing thermodynamic functions of Fe–Al binary melts based on atom–molecule coexistence theory

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

In order to further verify the accuracy and feasibility of the calculated mass action concentrations \(N_{i}\) of Al and Fe by the developed atom and molecule coexistence theory (AMCT) model, i.e., AMCT–\(N_{i}\) model, for representing activities \(a_{{{\text{R, }}i}}^{{}}\) of Al and Fe in Fe–Al binary melts reported in the first part of the serial studies, the molar mixing thermodynamic functions of Fe–Al binary melts over a temperature range from 1823 to 1973 K have been calculated based on \(N_{i}\) of Al and Fe as well as the effect of temperature on activity coefficients \(\gamma_{i}^{{}}\) of Al and Fe as \({{\partial \ln \gamma_{i} } \mathord{\left/ {\vphantom {{\partial \ln \gamma_{i} } {\partial T}}} \right. \kern-0pt} {\partial T}} = {{\partial \ln \left( {{{N_{i} } \mathord{\left/ {\vphantom {{N_{i} } {x_{i} }}} \right. \kern-0pt} {x_{i} }}} \right)} \mathord{\left/ {\vphantom {{\partial \ln \left( {{{N_{i} } \mathord{\left/ {\vphantom {{N_{i} } {x_{i} }}} \right. \kern-0pt} {x_{i} }}} \right)} {\partial T}}} \right. \kern-0pt} {\partial T}}\) by the developed AMCT–\(N_{i}\) model, where T is absolute temperature and xi is the mole fraction of element i or compound i in metallic melts. The reported molar mixing thermodynamic functions of Fe–Al binary melts as well as the reported excess molar mixing thermodynamic functions of Fe–Al binary melts relative to ideal solution as a basis from the available literatures have been critically assessed and applied as criteria to verify the developed AMCT–\(N_{i}\) model. The effect of changing temperature on \(\gamma_{i}^{{}}\) of Al and Fe, i.e., activity coefficient gradients \({{\partial \ln \gamma_{\text{Al}}^{{}} } \mathord{\left/ {\vphantom {{\partial \ln \gamma_{\text{Al}}^{{}} } {\partial T}}} \right. \kern-0pt} {\partial T}}\) and \({{\partial \ln \gamma_{\text{Fe}}^{{}} } \mathord{\left/ {\vphantom {{\partial \ln \gamma_{\text{Fe}}^{{}} } {\partial T}}} \right. \kern-0pt} {\partial T}}\), which are two indispensable parameters to calculate the molar mixing thermodynamic functions of Fe–Al binary melts, can be accurately obtained by the developed AMCT–\(N_{i}\) model and expressed by the cubic polynomial functions. Not only the partial molar mixing thermodynamic functions of Al and Fe in Fe–Al binary melts but also the integral molar mixing thermodynamic functions of Fe–Al binary melts can be accurately calculated by the developed AMCT–\(N_{i}\) model. Furthermore, the excess partial and integral molar mixing thermodynamic functions of Fe–Al binary melts relative to ideal solution as a basis can also be precisely calculated by the developed AMCT–\(N_{i}\) model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Sundman, I. Ohnuma, N. Dupin, U.R. Kattner, S.G. Fries, Acta Mater. 57 (2009) 2896–2908.

    Google Scholar 

  2. A.T. Phan, M.K. Paek, Y.B. Kang, Acta Mater. 79 (2014) 1–15.

    Google Scholar 

  3. M.K. Paek, J.J. Pak, Y.B. Kang, Metall. Mater. Trans. B 46 (2015) 2224–2233.

    Google Scholar 

  4. M.K. Paek, K.H. Do, Y.B. Kang, I.H. Jung, J.J. Pak, Metall. Mater. Trans. B 47 (2016) 2837–2847.

    Google Scholar 

  5. H. Lukas, S.G. Fries, B. Sundman, Computational thermodynamics: the Calphad method, Cambridge University Press, New York, USA, 2007.

    MATH  Google Scholar 

  6. W. Zheng, S. He, M. Selleby, Y. He, L. Li, X.G. Lu, J. Ågren, Calphad 58 (2017) 34–49.

    Google Scholar 

  7. R.P. Goel, H.H. Kellogg, J. Larrain, Metall. Trans. B 11 (1980) 107–117.

    Google Scholar 

  8. B. Björkman, Calphad 9 (1985) 271–282.

    Google Scholar 

  9. B. Sundman, J. Phase Equilib. 12 (1991) 127–140.

    Google Scholar 

  10. M. Selleby, B. Sundman, Calphad 20 (1996) 381–392.

    Google Scholar 

  11. B. Sundman, Calphad 15 (1991) 109–119.

    Google Scholar 

  12. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, Y. Dessureault, Metall. Mater. Trans. B 31 (2000) 651–659.

    Google Scholar 

  13. A.D. Pelton, P. Chartrand, Metall. Mater. Trans. A 32 (2001) 1355–1360.

    Google Scholar 

  14. P. Chartrand, A.D. Pelton, Metall. Mater. Trans. A 32 (2001) 1397–1407.

    Google Scholar 

  15. S.A. Degterov, E. Jak, P.C. Hayes, A.D. Pelton, Metall. Mater. Trans. B 32 (2001) 643–657.

    Google Scholar 

  16. O. Akinlade, R.N. Singh, F. Sommer, J. Alloy. Compd. 299 (2000) 163–168.

    Google Scholar 

  17. J. Zhang, Computational thermodynamics of metallurgical melts and solutions, Metallurgical Industry Press, Beijing, China, 2007.

    Google Scholar 

  18. X.M. Yang, J.S. Jiao, R.C. Ding, C.B. Shi, H.J. Guo, ISIJ Int. 49 (2009) 1828–1837.

    Google Scholar 

  19. C.B. Shi, X.M. Yang, J.S. Jiao, C. Li, H.J. Guo, ISIJ Int. 50 (2010) 1362–1372.

    Google Scholar 

  20. X.M. Yang, C.B. Shi, M. Zhang, G.M. Chai, F. Wang, Metall. Mater. Trans. B 42 (2011) 1150–1180.

    Google Scholar 

  21. X.M. Yang, M. Zhang, C.B. Shi, G.M. Chai, J. Zhang, Metall. Mater. Trans. B 43 (2012) 241–266.

    Google Scholar 

  22. X.M. Yang, J.P. Duan, C.B. Shi, M. Zhang, Y.L. Zhang, J.C. Wang, Metall. Mater. Trans. B 42 (2011) 738–770.

    Google Scholar 

  23. X.M. Yang, C.B. Shi, M. Zhang, J.P. Duan, J. Zhang, Metall. Mater. Trans. B 42 (2011) 951–977.

    Google Scholar 

  24. X.M. Yang, C.B. Shi, M. Zhang, J. Zhang, Steel Res. Int. 83 (2012) 244–258.

    Google Scholar 

  25. X.M. Yang, M. Zhang, J.L. Zhang, P.C. Li, J.Y. Li, J. Zhang, Steel Res. Int. 85 (2014) 347–375.

    Google Scholar 

  26. J.Y. Li, M. Zhang, M. Guo, X.M. Yang, Metall. Mater. Trans. B 45 (2014) 1666–1682.

    Google Scholar 

  27. X.M. Yang, J.Y. Li, M. Zhang, G.M. Chai, J. Zhang, Metall. Mater. Trans. B 45 (2014) 2118–2137.

    Google Scholar 

  28. X.M. Yang, M. Zhang, G.M. Chai, J.Y. Li, Q. Liang, J. Zhang, Ironmak. Steelmak. 43 (2016) 663–687.

    Google Scholar 

  29. X.M. Yang, J.Y. Li, G.M. Chai, D.P. Duan, J. Zhang, Metall. Mater. Trans. B 47 (2016) 2279–2301.

    Google Scholar 

  30. X.M. Yang, J.Y. Li, G.M. Chai, D.P. Duan, J. Zhang, Metall. Mater. Trans. B 47 (2016) 2302–2329.

    Google Scholar 

  31. X.M. Yang, J.Y. Li, G.M. Chai, D.P. Duan, J. Zhang, Ironmak. Steelmak. 44 (2017) 437–454.

    Google Scholar 

  32. X.M. Yang, J.Y. Li, M. Zhang, G.M. Chai, D.P. Duan, J. Zhang, Ironmak. Steelmak. 45 (2018) 25–43.

    Google Scholar 

  33. X.M. Yang J.Y. Li, M. Zhang, F.J. Yan, D.P. Duan, J. Zhang, Metals 8 (2018) 1083

    Google Scholar 

  34. X.M. Yang, M. Zhang, P.C. Li, J.Y. Li, J.L. Zhang, J. Zhang, Metall. Mater. Trans. B 43 (2012) 1358–1387.

    Google Scholar 

  35. X.M. Yang, M. Zhang, P.C. Li, J.Y. Li, J. Zhang, Steel Res. Int. 84 (2013) 784–811.

    Google Scholar 

  36. X.M. Yang, J.Y. Li, P.C. Li, M. Zhang, J. Zhang, Steel Res. Int. 85 (2014) 164–206.

    Google Scholar 

  37. X.M. Yang, P.C. Li, J.Y. Li, M. Zhang, J.L. Zhang, J. Zhang, Steel Res. Int. 85 (2014) 426–460.

    Google Scholar 

  38. X.M. Yang, J.Y. Li, M.F. Wei, J. Zhang, Metall. Mater. Trans. B 47 (2016) 174–206.

    Google Scholar 

  39. X.M. Yang, J.Y. Li, D.P. Duan, F.J. Yan, J. Zhang, J. Iron Steel Res. Int. 25 (2018) 37–56.

    Google Scholar 

  40. X.M. Yang, J.Y. Li, F.J. Yan, D.P. Duan, J. Zhang, J. Iron Steel Res. Int. 25 (2018) 181–199.

    Google Scholar 

  41. X.M. Yang, J.Y. Li, F.J. Yan, D.P. Duan, J. Zhang, High Temp. Mater. Proc. 37 (2018) 815–848.

    Google Scholar 

  42. F. Sommer, Z. Metallkde 73 (1982) 72–76.

    Google Scholar 

  43. F. Sommer, Z. Metallkde 73 (1982) 77–86.

    Google Scholar 

  44. K. Wasai, K. Mukai, J. Jpn. Inst. Met. 45 (1981) 593–602.

    Google Scholar 

  45. K. Wasai, K. Mukai, J. Jpn. Inst. Met. 46 (1982) 266–274.

    Google Scholar 

  46. J.H. Hildebrand, E.D. Eastman, J. Am. Chem. Soc. 37 (1915) 2452–2459.

    Google Scholar 

  47. A.S. Jordan, Metall. Trans. 1 (1970) 239–249.

    Google Scholar 

  48. Z. Moser, E. Kawecka, F. Sommer, B. Predel, Metall. Trans. B 13 (1982) 71–76.

    Google Scholar 

  49. C.A. Eckert, J.S. Smith, R.B. Irwin, K.R. Cox, AIChE J. 28 (1982) 325–333.

    Google Scholar 

  50. C.A. Eckert, R.B. Irwin, J.S. Smith, Metall. Trans. B 14 (1983) 451–458.

    Google Scholar 

  51. S. Wasiur-Rahman, M. Medraj, Intermetallics 17 (2009) 847-864.

    Google Scholar 

  52. A.D. Pelton, Y.B. Kang, Int. J. Mater. Res. 98 (2007) 907–917.

    Google Scholar 

  53. J.Y. Zhang, Metallurgical physicochemistry, Metallurgical Industry Press, Beijing, China, 2004.

    Google Scholar 

  54. X.H. Huang, Principles of ironmaking and steelmaking, 3rd ed., Metallurgical Industry Press, Beijing, China, 2005.

    Google Scholar 

  55. N.S. Jacobson, G.M. Mehrotra, Metall. Trans. B 24 (1993) 481–486.

    Google Scholar 

  56. J. Chipman, T.P. Floridis, Acta Metall. 3 (1955) 456–459.

    Google Scholar 

  57. F. Wooley, J.F. Elliott, Trans. Met. Soc. AIME 239 (1967) 1872–1883.

    Google Scholar 

  58. A. Coskun, J.F. Elliott, Trans. Met. Soc. AIME 242 (1968) 253–255.

    Google Scholar 

  59. H. Mitani, H. Nagai, J. Jpn. Inst. Met. 32 (1968) 752–755.

    Google Scholar 

  60. G.R. Belton, R.J. Fruehan, Trans. Met. Soc. AIME 245 (1969) 113–117.

    Google Scholar 

  61. R.J. Fruehan, Metall. Trans. 1 (1970) 3403–3410.

    Google Scholar 

  62. E. Ichise, T. Yamauchi, T. Mori, Tetsu-to-Hagané 63 (1977) 417–424.

    Google Scholar 

  63. P.D. Desai, J. Phys. Chem. Ref. Data 16 (1987) 109–124.

    Google Scholar 

  64. S.V. Radcliffe, B.L. Averbach, M. Cohen, Acta Metall. 9 (1961) 169–176.

    Google Scholar 

  65. J. Eldridge, K.L. Komarek, Trans. Met. Soc. AIME 230 (1964) 226–233.

    Google Scholar 

  66. M.W. Chase Jr., C.A. Davies, J.R. Downey Jr., D.J. Frurip, R.A. McDonald, A.N. Syverud, eds., JANAF thermochemical tables, American Institute for Physics, New York, USA, 1986.

    Google Scholar 

  67. O. Kubaschewski, Iron-binary phase diagrams, Springer-Verlag Berlin Heidelberg, New York, USA, 1982.

    Google Scholar 

  68. T.B. Massalski, J.L. Murray, L.H. Bennett, H. Baker, eds., Binary alloy phase diagrams, ASM, Metals Park, OH, USA, 1986.

    Google Scholar 

  69. ASM International, ASM handbook volume 3-alloy phase diagrams, The Materials Information Company, USA, 1992.

  70. S.K. Wei, Thermodynamics of metallurgical processes, Science Press, Beijing, China, 2010.

    Google Scholar 

  71. S.K. Wei, Application of activity into metallurgical physicochemistry, China Industry Press, Beijing, China, 1964.

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Beijing Natural Science Foundation (Grant No. 2182069) and the National Natural Science Foundation of China (Grant No. 51174186).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-min Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Xm., Li, Jy., Yan, Fj. et al. Critical assessment of mixing thermodynamic functions of Fe–Al binary melts based on atom–molecule coexistence theory. J. Iron Steel Res. Int. 27, 266–281 (2020). https://doi.org/10.1007/s42243-019-00301-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00301-2

Keywords

Navigation