Skip to main content
Log in

Effects of Cr content on corrosion behaviour and corrosion products of spring steels

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Neutral salt spray corrosion experiments of spring steels with different Cr contents were carried out for different corrosion periods. The optical microscope was used to observe the macroscopic corrosion morphology of the steel surface. The corrosion pit morphology of steel surface was observed by laser scanning confocal microscopy and scanning electron microscopy, and three-dimensional simulation was carried out. At the same time, the corrosion products (rust layer) were qualitatively and quantitatively analysed by X-ray diffraction. As the results show, Cr is beneficial to improving corrosion resistance of the experimental steel matrix, and the higher the content of Cr, the stronger the corrosion resistance will be. With increase in Cr content in steel, the development of corrosion process will be more effectively suppressed. With the increase in Cr content, the denser the corrosion products, the stronger the bond with the metal matrix is. The corrosion products have obvious stratification; the outer layer is mainly composed of γ-FeOOH, which is relatively loose and not firmly integrated with the matrix, while the inner layer contains α-FeOOH and Fe3O4, which are relatively dense and closely integrated with the matrix. The types of corrosion are constantly changing during different phases of corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.Z. Han, H. Han, W. Gao, Z.M. Bian, W. Yuan, Q. Yang, J.D. Bian, Automotive Technology (2000) No. 12, 4–26.

  2. J.M. Zhang, Z.G. Yang, S.X. Li, G.Y. Li, W.J. Hui, Y.Q. Weng, Acta Metall. Sin. 42 (2006) 259–264.

    Google Scholar 

  3. X.M. Zhang, Modern Components (2006) No. 7, 64–66.

  4. S.A. Al-Duheisat, A.S. El-Amoush, Mater. Des. 89 (2016) 342–347.

    Article  Google Scholar 

  5. S. Geng, J. Sun, L. Guo, Mater. Des. 88 (2015) 1–7.

    Article  Google Scholar 

  6. L.X. Yang, Special Steel Technology (1998) Z1, 14–19.

    Google Scholar 

  7. K. Xiao, C.F. Dong, X.G. Li, F.M. Wang, Equipment Environmental Engineering (2007) No. 3, 5–8.

  8. Y.H. Qian, C.H. Ma, D. Niu, J.J. Xu, M.S. Li, Corros. Sci. 74 (2013) 424–429.

    Article  Google Scholar 

  9. Q. Li, C.B. Xiao, H.Q. Yang, J.X. Song, M. Li, J. Iron Steel Res. 23 (2011) No. S2, 381–384.

    Google Scholar 

  10. Y.H. Qian, D. Niu, J.J. Xu, M.S. Li, Corros. Sci. 71 (2013) 72–77.

    Article  Google Scholar 

  11. Y. Li, Y.F. Cheng, Appl. Surf. Sci. 366 (2016) 95–103.

    Article  Google Scholar 

  12. L.Y. Xu, Y.F. Cheng, Corros. Sci. 78 (2014) 162–171.

    Article  Google Scholar 

  13. D.D. La Fuente, I. Díaz, J. Simancas, B. Chico, M. Morcillo, Corros. Sci. 53 (2011) 604–617.

    Article  Google Scholar 

  14. N. Yahata, T. Inukai, J. Okuda, J. Soc. Mater. Sci. Jpn. 28 (1979) 106–111.

    Article  Google Scholar 

  15. D.G. He, Y.C. Lin, Y. Tang, L. Li, J. Chen, M.S. Chen, X.M. Chen, Mater. Sci. Eng. A 764 (2019) 372–383.

    Article  Google Scholar 

  16. X.G. Li, C.F. Dong, K. Xiao, J. Gao, Corrosion aging behavior and mechanism of typical materials in Xisha marine atmospheric environment, Science Press, Beijing, China, 2014.

    Google Scholar 

  17. M. Yamashita, T. Misawa, S.J. Oh, R. Balasubramanian, D.C. Cook, Zairyo-to-Kankyo 49 (2000) 82–87.

    Article  Google Scholar 

  18. H.Y. Hsieh, N. Chen, C.L. Liao, Proceedings of joint rail conference and internal combustion engine division spring technical conference, American Society of Mechanical Engineers, Pueblo, Colorado, USA, 2007, pp. 319–325.

  19. J.M. Liang, D. Tang, H.B. Wu, P.C. Zhang, W. Liu, H.Y. Mao, X.T. Liu, Journal of South China University of Technology 41 (2013) No. 10, 72–78.

    Google Scholar 

  20. P. Murkute, J. Ramkumar, S. Choudhary, K. Mondal, Wear 368 (2016) 368–378.

    Article  Google Scholar 

  21. J. Alcántara, B. Chico, J. Simancas, I. Díaz, D. de la Fuente, M. Morcillo, Mater. Charact. 118 (2016) 65–78.

    Article  Google Scholar 

  22. D. de la Fuente, J. Alcántara, B. Chico, I. Díaz, J.A. Jiménez, M. Morcillo, Corros. Sci. 110 (2016) 253–264.

    Article  Google Scholar 

  23. J.G. Castaño, C.A. Botero, A.H. Restrepo, E.A. Agudelo, E. Correa, F. Echeverría, Corros. Sci. 52 (2010) 216–223.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key R&D Program of China (2017YFB0304900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-li Mi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, Mf., Chen, Yl., Mi, Zl. et al. Effects of Cr content on corrosion behaviour and corrosion products of spring steels. J. Iron Steel Res. Int. 26, 1000–1010 (2019). https://doi.org/10.1007/s42243-019-00250-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00250-w

Keywords

Navigation