Skip to main content
Log in

Experimental characterization of anisotropic tensile mechanical behavior of pure titanium tube

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The anisotropic tensile mechanical properties of pure titanium (TA2) tubes were studied by means of theoretical analysis, finite element simulation and tensile tests. Based on the stress analysis of circumferential tensile of TA2 tube, an equation for calculating the tangential force of circumferential tensile specimen was established, and the relationship among tangential force, friction and position of ring specimen was analyzed. The finite element simulation analysis of circumferential tensile process of TA2 ring specimen was carried out, which verified the tangential force equation derived from theoretical analysis. The effect of gauge length and friction on necking and tensile load was analyzed, and the optimal gauge length was selected for the ring hoop tensile test. Finally, the axial and circumferential tensile digital image correlation experiments were carried out to verify the theoretical and finite element simulation results. The friction coefficient between TA2 tube and D-blocks (using Teflon lubricant) was determined by the inverse finite element method and the friction experiment, and the true stress–strain curve of TA2 tube was obtained. The results show that the axial and circumferential mechanical behaviors of TA2 tubes are significantly different and anisotropic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Q.G. Chen, X.F. Xu, G.C. Wang, L.L. Li, S. Zhao, L. Xu, Hot Working Technology 45 (2016) No. 8, 118–120.

    Google Scholar 

  2. J.S. Chen, D.X. E, J.W. Zhang, Acta Armamentarii 34 (2013) 865–868.

  3. S.G. Zhou, Q. Fu, Fiber Reinforced Plastics/Composites (2004) No. 6, 3–6.

  4. S. Fuchizawa, M. Narazaki. Bulge test for determining stress-strain characteristics of thin tubes, 4th ed., Advanced Technology of Plasticity, Beijing, 1993.

    Google Scholar 

  5. T. Kuwabara, K. Yoshida, K. Narihara, S. Takahashi, Int. J. Plast. 21 (2005) 101–117.

    Article  Google Scholar 

  6. E.G. Price, Can. Metall. Quart. 11 (1972) 129–138.

    Article  Google Scholar 

  7. S. Arsense, J. Bai, J. Test. Eval. 24 (1996) 386–391.

    Article  Google Scholar 

  8. S. Arsense, J. Bai, J. Test. Eval. 26 (1998) 26–30.

    Article  Google Scholar 

  9. H. Wang, R. Bouchard, R. Eagleson, J. Test. Eval. 30 (2002) 382–391.

    Article  Google Scholar 

  10. L. Jiang, J.J. Jonas, K. Boyle, P. Martin, Mater. Sci. Eng. A 492 (2008) 68–73.

    Article  Google Scholar 

  11. Z.B. He, S.J. Yuan, W.W. Cha, Y.C. Liang, Acta Metal. Sin. 44 (2008) 423–427.

    Google Scholar 

  12. Z.B. He, G. Liu, J. Wu, S.J. Yuan, Y.C. Liang, Trans. Nonferrous Metal. Soc. China 18 (2008) s209–s213.

    Article  Google Scholar 

  13. C.P. Dick, Y.P. Korkolis, Int. J. Solid. Struct. 51 (2014) 3042–3057.

    Article  Google Scholar 

  14. I. Barsoum, K.F.A. Ali, Int. J. Pressure Vessels Piping 128 (2015) 59–68.

    Article  Google Scholar 

  15. H. Zhao, Y. Xia, Z.Q. Yao, J.W. Jin, J. Automotive Safety Energy 6 (2015) 250–258.

    Google Scholar 

  16. M. Yan, Q. Peng, P.F. Wang, W.J. Zhao, Rare Metal Mater. Eng. 44 (2015) No. 1, 58–61.

    Article  Google Scholar 

  17. F. Nagase, T. Sugiyama, T. Fuketa, J. Nuclear Sci. Technol. 46 (2009) 545–552.

    Article  Google Scholar 

  18. V. Tvergaard, A. Needleman, Acta Metall. 32 (1984) 157–169.

    Article  Google Scholar 

  19. W.W. Zhang, S. Cong, Int. J. Advan. Manufact. Technol. 86 (2016) 427–435.

    Article  Google Scholar 

  20. L. Farbaniec , H. Couque , G. Dirras. Int. J. Eng. Sci. 119 (2017) 192–204.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial supports of the National Natural Science Foundation of China (Nos. 51675260 and 51475223) and the Six Talents Peak Project of Jiangsu Province (No. 2014-ZBZZ-012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-hua He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Jb., Sun, Py., Zhou, Cy. et al. Experimental characterization of anisotropic tensile mechanical behavior of pure titanium tube. J. Iron Steel Res. Int. 26, 91–101 (2019). https://doi.org/10.1007/s42243-018-0210-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-018-0210-4

Keywords

Navigation