Skip to main content
Log in

Effect of superheat on quality of central equiaxed grain zone of continuously cast bearing steel billet based on two-dimensional segregation ratio

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The quality of central equiaxed grain zone (CEGZ) of GCr15 bearing steel billets was investigated at different superheats (20, 25 and 35 °C) by experimental observations and a finite element model in order to optimize superheat in continuous casting process. Several GCr15 billets were collected from the continuous casting shop, and the same CEGZ was chosen for comparison of internal quality of GCr15 billets. Considering the limitation of segregation index at some points, two-dimensional segregation ratio in CEGZ was introduced. Firstly, the segregation ratio and the area of center large dark points in CEGZ obtain the minimum at 25 °C superheat, which indicates that the quality of CEGZ at 25 °C superheat is improved compared with those at 20 and 35 °C superheats for corresponding continuously cast billets. The highest superheat and the lowest superheat are not beneficial for improving the central zone quality in the billets. Secondly, the quality of CEGZ of GCr15 billets increases with a decrease in the secondary dendrite arm spacing of CEGZ. Finally, according to the established finite element model, it is deduced that the secondary dendrite arm spacing of CEGZ is closely related to its later solidification time at solid fraction of 0.5–1.0, and the former will be decreased when decreasing the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Li, J. Lei, H. Xu, F. Yu, H. Dong, W. Cao, J. Iron Steel Res. 28 (2016) 1–12.

    Google Scholar 

  2. T. Uesugi, Trans. Iron Steel Inst. Jpn. 26 (1986) 614–620.

    Article  Google Scholar 

  3. M.C. Flemings, ISIJ Int. 40 (2000) 833–841.

    Article  Google Scholar 

  4. G. Engstrom, H. Fredriksson, B. Rogberg, Scand. J. Metall. 12 (1983) 3–12.

    Google Scholar 

  5. Y. Xu, E. Wang, Z. Li, A. Deng, J. Iron Steel Res. Int. 24 (2017) 483–489.

    Article  Google Scholar 

  6. S.K. Choudhary, S. Ganguly, ISIJ Int. 47 (2007) 1759–1766.

    Article  Google Scholar 

  7. M. Nakatani, T. Adachi, Y. Sugitani, S. Kobayashi, M. Yoshihara, S. Ishimura, Tetsu-to-Hagané 67 (1981) 1287–1296.

    Article  Google Scholar 

  8. H. Esaka, T. Wakabayashi, K. Shinozuka, M. Tamura, ISIJ Int. 43 (2003) 1415–1420.

    Article  Google Scholar 

  9. Z. Hou, F. Jiang, G. Cheng, ISIJ Int. 52 (2012) 1301–1309.

    Article  Google Scholar 

  10. Y. Tsuchida, M. Nakada, I. Sugawara, S. Miyahara, K. Murakami, S. Tokushige, Trans. Iron Steel Inst. Jpn. 22 (1982) B265–B265.

    Google Scholar 

  11. M. Bobadilla, J.M. Jolivet, J.Y.Lamant, M. Larrecq, Mater. Sci. Eng. A 173 (1993) 275–285.

    Article  Google Scholar 

  12. Z. Hou, G. Cheng, F. Jiang, G. Qian, ISIJ Int. 53 (2013) 655–664.

    Article  Google Scholar 

  13. M.C. Flemings, Solidification Processing, McGraw-Hill, New York, 1974.

    Google Scholar 

  14. K.P. Young, D.H. Kerkwood, Metall. Mater. Trans. A 6 (1975) 197–205.

    Article  Google Scholar 

  15. S.P. Marsh, M.E. Glicksman, Metall. Mater. Trans. A 27 (1996) 557–567.

    Article  Google Scholar 

  16. S.K. Choudhary, D. Mazumdar, Steel Res. Int. 66 (1995) 199–205.

    Article  Google Scholar 

  17. K. Cai, J. Yang, J. Univ. Sci. Technol. Beijing 11 (1989) 509–514.

    Google Scholar 

  18. K.J. Schwerdtfeger, in: Shaping and Treating of Steel, The AISE Steel Foundation, Pittsburgh, PA, 2003, pp. 18.

    Google Scholar 

  19. Z. Hou, G. Cheng, C. Wu, C. Chen, Metall. Mater. Trans. B 43 (2012) 1517–1529.

    Article  Google Scholar 

  20. Y. Chang, Z. Hou, W. Wang, Y. Xu, Iron and Steel 51 (2016) No. 11, 43–48, 54.

  21. Y. Chen, S. Yang, M. Zhu, Iron and Steel 42 (2007) No. 2, 24–27.

  22. T. Sun, F. Yue, H. Wu, C. Guo, Y. Li, Z. Ma, J. Iron Steel Res. Int. 23 (2016) 329–337.

    Article  Google Scholar 

  23. O. Volkova, H.P. Heller, D. Janke, ISIJ Int. 43 (2003)1724–1732.

    Article  Google Scholar 

  24. S. Chakraborty, P. Dutta, Mater. Sci. Technol. 17 (2001) 1531–1538.

    Article  Google Scholar 

  25. W. Kurz, D.J. Fisher, Fundamentals of Solidification, 4th edition, Trans. Tech. Pub., Switzerland, 1998.

    Google Scholar 

  26. W. Li, W. Zhu, W. Wang, X. Wang, J. Univ. Sci. Technol. Beijing 25 (2003) 315–318.

    Google Scholar 

  27. J. Cui, W. Li, J. Tsinghua Univ. (Sci. Tech.) 41 (2001) No. 8, 5–8.

Download references

Acknowledgements

The authors are very grateful for National Natural Science Foundation of China (No. 51504047) and Fundamental Research Funds for the Central Universities (No. CDJPY14130001). Meanwhile, the authors acknowledge very valuable discussion with Prof. Guang-hua Wen and Prof. Ping Tang from Chongqing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-bing Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Hou, Zb., Chang, Y. et al. Effect of superheat on quality of central equiaxed grain zone of continuously cast bearing steel billet based on two-dimensional segregation ratio. J. Iron Steel Res. Int. 25, 9–18 (2018). https://doi.org/10.1007/s42243-017-0006-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-017-0006-y

Keywords

Navigation