Skip to main content
Log in

Advanced strategies in the application of gelatin-based bioink for extrusion bioprinting

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

The significance of bioink suitability for the extrusion bioprinting of tissue-like constructs cannot be overemphasized. Gelatin, derived from the hydrolysis of collagen, not only can mimic the extracellular matrix to immensely support cell function, but also is suitable for extrusion under certain conditions. Thus, gelatin has been recognized as a promising bioink for extrusion bioprinting. However, the development of a gelatin-based bioink with satisfactory printability and bioactivity to fabricate complex tissue-like constructs with the desired physicochemical properties and biofunctions for a specific biomedical application is still in its infancy. Therefore, in this review, we aim to comprehensively summarize the state-of-the-art methods of gelatin-based bioink application for extrusion bioprinting. We firstly outline the properties and requirements of gelatin-based bioinks for extrusion bioprinting, highlighting the strategies to overcome their main limitations in terms of printability, structural stability and cell viability. Then, the challenges and prospects are further discussed regarding the development of ideal gelatin-based bioinks for extrusion bioprinting to create complex tissue-like constructs with preferable physicochemical properties and biofunctions.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kim JH, Kim I, Seol YJ et al (2020) Neural cell integration into 3D bioprinted skeletal muscle constructs accelerates restoration of muscle function. Nat Commun 11(1):1025. https://doi.org/10.1038/s41467-020-14930-9

    Article  Google Scholar 

  2. Qu H, Han Z, Chen Z et al (2021) Fractal design boosts extrusion-based 3D printing of bone-mimicking radial-gradient scaffolds. Research 2021:9892689. https://doi.org/10.34133/2021/9892689

  3. Zhang YS, Haghiashtiani G, Hübscher T et al (2021) 3D extrusion bioprinting. Nat Rev Methods Primers 1(1):75. https://doi.org/10.1038/s43586-021-00073-8

    Article  Google Scholar 

  4. Bejleri D, Streeter BW, Nachlas ALY et al (2018) A bioprinted cardiac patch composed of cardiac-specific extracellular matrix and progenitor cells for heart repair. Adv Healthc Mater 7(23):1800672. https://doi.org/10.1002/adhm.201800672

    Article  Google Scholar 

  5. Li C, Cui W (2021) 3D bioprinting of cell-laden constructs for regenerative medicine. Eng Regenerat 2:195–205. https://doi.org/10.1016/j.engreg.2021.11.005

    Article  Google Scholar 

  6. Ahadian S, Khademhosseini A (2018) A perspective on 3D bioprinting in tissue regeneration. Bio-Des Manuf 1(3):157–160. https://doi.org/10.1007/s42242-018-0020-3

    Article  Google Scholar 

  7. Daly AC, Davidson MD, Burdick JA (2021) 3D bioprinting of high cell-density heterogeneous tissue models through spheroid fusion within self-healing hydrogels. Nat Commun 12(1):753. https://doi.org/10.1038/s41467-021-21029-2

    Article  Google Scholar 

  8. Daly AC, Prendergast ME, Hughes AJ et al (2021) Bioprinting for the biologist. Cell 184(1):18–32. https://doi.org/10.1016/j.cell.2020.12.002

    Article  Google Scholar 

  9. Kocak E, Yildiz A, Acarturk F (2021) Three dimensional bioprinting technology: applications in pharmaceutical and biomedical area. Colloids Surf B 197:111396. https://doi.org/10.1016/j.colsurfb.2020.111396

  10. Park JY, Mani S, Clair G et al (2022) A microphysiological model of human trophoblast invasion during implantation. Nat Commun 13(1):1252. https://doi.org/10.1038/s41467-022-28663-4

    Article  Google Scholar 

  11. Brassard JA, Nikolaev M, Hubscher T et al (2021) Recapitulating macro-scale tissue self-organization through organoid bioprinting. Nat Mater 20(1):22–29. https://doi.org/10.1038/s41563-020-00803-5

    Article  Google Scholar 

  12. Jin ZZ, Li XD, Liu BX et al (2022) Coaxial bioprinted microfibers with mesenchymal stem cells for glioma microenvironment simulation. Bio-Des Manuf 5(2):348–357. https://doi.org/10.1007/s42242-021-00155-2

    Article  Google Scholar 

  13. Kelly BE, Bhattacharya I, Heidari H et al (2019) Volumetric additive manufacturing via tomographic reconstruction. Science 363(6431):1075–1079. https://doi.org/10.1126/science.aau7114

    Article  Google Scholar 

  14. Mota C, Camarero-Espinosa S, Baker MB et al (2020) Bioprinting: from tissue and organ development to in vitro models. Chem Rev 120(19):10547–10607. https://doi.org/10.1021/acs.chemrev.9b00789

    Article  Google Scholar 

  15. Vanaei S, Parizi MS, Vanaei S et al (2021) An overview on materials and techniques in 3D bioprinting toward biomedical application. Eng Regenerat 2:1–18. https://doi.org/10.1016/j.engreg.2020.12.001

    Article  Google Scholar 

  16. Mao H, Yang L, Zhu H et al (2020) Recent advances and challenges in materials for 3D bioprinting. Prog Nat Sci Mater Int 30(5):618–634. https://doi.org/10.1016/j.pnsc.2020.09.015

    Article  Google Scholar 

  17. Ozbolat IT, Hospodiuk M (2016) Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76:321–343. https://doi.org/10.1016/j.biomaterials.2015.10.076

    Article  Google Scholar 

  18. Santoni S, Gugliandolo SG, Sponchioni M et al (2022) 3D bioprinting: current status and trends—a guide to the literature and industrial practice. Bio-Des Manuf 5(1):14–42. https://doi.org/10.1007/s42242-021-00165-0

    Article  Google Scholar 

  19. Lee A, Hudson AR, Shiwarski DJ et al (2019) 3D bioprinting of collagen to rebuild components of the human heart. Science 365(6452):482–487. https://doi.org/10.1126/science.aav9051

    Article  Google Scholar 

  20. Chakraborty J, Mu X, Pramanick A et al (2022) Recent advances in bioprinting using silk protein-based bioinks. Biomaterials 287:121672. https://doi.org/10.1016/j.biomaterials.2022.121672

  21. Datta P, Ayan B, Ozbolat IT (2017) Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater 5:11–20. https://doi.org/10.1016/j.actbio.2017.01.035

    Article  Google Scholar 

  22. Fu Z, Naghieh S, Xu C et al (2021) Printability in extrusion bioprinting. Biofabrication 13(3):033001. https://doi.org/10.1088/1758-5090/abe7ab

  23. Ravanbakhsh H, Karamzadeh V, Bao G et al (2021) Emerging technologies in multi-material bioprinting. Adv Mater 33(49):e2104730. https://doi.org/10.1002/adma.202104730

  24. Lee SC, Gillispie G, Prim P et al (2020) Physical and chemical factors influencing the printability of hydrogel-based extrusion bioinks. Chem Rev 120(19):10834–10886. https://doi.org/10.1021/acs.chemrev.0c00015

    Article  Google Scholar 

  25. Askari M, Naniz MA, Kouhi M et al (2021) Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater Sci 9(3):535–573. https://doi.org/10.1039/d0bm00973c

    Article  Google Scholar 

  26. Donderwinkel I, van Hest JCM, Cameron NR (2017) Bio-inks for 3D bioprinting: recent advances and future prospects. Polym Chem 8(31):4451–4471. https://doi.org/10.1039/c7py00826k

    Article  Google Scholar 

  27. Schwab A, Levato R, D’Este M et al (2020) Printability and shape fidelity of bioinks in 3D bioprinting. Chem Rev 120(19):11028–11055. https://doi.org/10.1021/acs.chemrev.0c00084

    Article  Google Scholar 

  28. Ouyang L (2022) Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting. Trends Biotechnol 40(7):891–902. https://doi.org/10.1016/j.tibtech.2022.01.001

    Article  Google Scholar 

  29. Liu Y, Peng L, Li L et al (2021) 3D-bioprinted BMSC-laden biomimetic multiphasic scaffolds for efficient repair of osteochondral defects in an osteoarthritic rat model. Biomaterials 279:121216. https://doi.org/10.1016/j.biomaterials.2021.121216

  30. Gaharwar AK, Singh I, Khademhosseini A (2020) Engineered biomaterials for in situ tissue regeneration. Nat Rev Mater 5(9):686–705. https://doi.org/10.1038/s41578-020-0209-x

    Article  Google Scholar 

  31. Bello AB, Kim D, Kim D et al (2020) Engineering and functionalization of gelatin biomaterials: from cell culture to medical applications. Tissue Eng Part B Rev 26(2):164–180. https://doi.org/10.1089/ten.TEB.2019.0256

    Article  Google Scholar 

  32. Xiao S, Zhao T, Wang J et al (2019) Gelatin methacrylate (GelMA)-based hydrogels for cell transplantation: an effective strategy for tissue engineering. Stem Cell Rev 15(5):664–679. https://doi.org/10.1007/s12015-019-09893-4

    Article  Google Scholar 

  33. Xiang L, Cui W (2021) Biomedical application of photo-crosslinked gelatin hydrogels. J Leather Sci Eng 3(1):3. https://doi.org/10.1186/s42825-020-00043-y

    Article  Google Scholar 

  34. Wang X, Ao Q, Tian X et al (2017) Gelatin-based hydrogels for organ 3D bioprinting. Polymers 9(9):401. https://doi.org/10.3390/polym9090401

    Article  Google Scholar 

  35. Ying G, Jiang N, Yu C et al (2018) Three-dimensional bioprinting of gelatin methacryloyl (GelMA). Bio-Des Manuf 1(4):215–224. https://doi.org/10.1007/s42242-018-0028-8

    Article  Google Scholar 

  36. Rajabi N, Rezaei A, Kharaziha M et al (2021) Recent advances on bioprinted gelatin methacrylate-based hydrogels for tissue repair. Tissue Eng Part A 27(11–12):679–702. https://doi.org/10.1089/ten.TEA.2020.0350

    Article  Google Scholar 

  37. Yue K, Trujillo-de Santiago G, Alvarez MM et al (2015) Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 732:54–71. https://doi.org/10.1016/j.biomaterials.2015.08.045

    Article  Google Scholar 

  38. Gomez-Guillen MC, Gimenez B, Lopez-Caballero ME et al (2011) Functional and bioactive properties of collagen and gelatin from alternative sources: a review. Food Hydrocoll 25(8):1813–1827. https://doi.org/10.1016/j.foodhyd.2011.02.007

    Article  Google Scholar 

  39. Lukin I, Erezuma I, Maeso L et al (2022) Progress in gelatin as biomaterial for tissue engineering. Pharmaceutics 14(6):1177. https://doi.org/10.3390/pharmaceutics14061177

    Article  Google Scholar 

  40. Gómez-Guillén MC, Pérez-Mateos M, Gómez-Estaca J et al (2009) Fish gelatin: a renewable material for developing active biodegradable films. Trends Food Sci Technol 20(1):3–16. https://doi.org/10.1016/j.tifs.2008.10.002

    Article  Google Scholar 

  41. Liu D, Nikoo M, Boran G et al (2015) Collagen and gelatin. Annu Rev Food Sci Technol 6:527–557. https://doi.org/10.1146/annurev-food-031414-111800

    Article  Google Scholar 

  42. Wang Z, Tian Z, Menard F et al (2017) Comparative study of gelatin methacrylate hydrogels from different sources for biofabrication applications. Biofabrication 9(4):044101. https://doi.org/10.1088/1758-5090/aa83cf

  43. Paxton N, Smolan W, Boeck T et al (2017) Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability. Biofabrication 9(4):044107. https://doi.org/10.1088/1758-5090/aa8dd8

  44. Gillispie G, Prim P, Copus J et al (2020) Assessment methodologies for extrusion-based bioink printability. Biofabrication 12(2):022003. https://doi.org/10.1088/1758-5090/ab6f0d

  45. GhavamiNejad A, Ashammakhi N, Wu XY et al (2020) Crosslinking strategies for 3D bioprinting of polymeric hydrogels. Small 16(35):e2002931. https://doi.org/10.1002/smll.202002931

  46. Townsend JM, Beck EC, Gehrke SH et al (2019) Flow behavior prior to crosslinking: the need for precursor rheology for placement of hydrogels in medical applications and for 3D bioprinting. Prog Polym Sci 91:126–140. https://doi.org/10.1016/j.progpolymsci.2019.01.003

    Article  Google Scholar 

  47. Ouyang L, Yao R, Zhao Y et al (2016) Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 8(3):035020. https://doi.org/10.1088/1758-5090/8/3/035020

  48. Mouser VHM, Melchels FPW, Visser J et al (2016) Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprinting. Biofabrication 8(3):035003. https://doi.org/10.1088/1758-5090/8/3/035003

  49. Li H, Tan YJ, Liu S et al (2018) Three-dimensional bioprinting of oppositely charged hydrogels with super strong interface bonding. ACS Appl Mater Interfaces 10(13):11164–11174. https://doi.org/10.1021/acsami.7b19730

    Article  Google Scholar 

  50. Yoon S, Park JA, Lee HR et al (2018) Inkjet-spray hybrid printing for 3D freeform fabrication of multilayered hydrogel structures. Adv Healthc Mater 7(14):1800050. https://doi.org/10.1002/adhm.201800050

    Article  Google Scholar 

  51. Gudapati H, Dey M, Ozbolat I (2016) A comprehensive review on droplet-based bioprinting: past, present and future. Biomaterials 102:20–42. https://doi.org/10.1016/j.biomaterials.2016.06.012

    Article  Google Scholar 

  52. Valot L, Martinez J, Mehdi A et al (2019) Chemical insights into bioinks for 3D printing. Chem Soc Rev 48(15):4049–4086. https://doi.org/10.1039/c7cs00718c

    Article  Google Scholar 

  53. Rastogi P, Kandasubramanian B (2019) Review of alginate-based hydrogel bioprinting for application in tissue engineering. Biofabrication 11(4):042001. https://doi.org/10.1088/1758-5090/ab331e

  54. Chawla S, Midha S, Sharma A et al (2018) Silk-based bioinks for 3D bioprinting. Adv Healthc Mater 7(8):e1701204. https://doi.org/10.1002/adhm.201701204

  55. Petta D, D'Amora U, Ambrosio L et al (2020) Hyaluronic acid as a bioink for extrusion-based 3D printing. Biofabrication 12(3):032001. https://doi.org/10.1088/1758-5090/ab8752

  56. Lan X, Adesida AB, Boluk Y (2022) Rheological and viscoelastic properties of collagens and their role on bioprinting by micro-extrusion. Biomed Mater 17(6):062005. https://doi.org/10.1088/1748-605X/ac9b06

  57. Zhai X, Ruan C, Ma Y et al (2018) 3D-bioprinted osteoblast-laden nanocomposite hydrogel constructs with induced microenvironments promote cell viability, differentiation, and osteogenesis both in vitro and in vivo. Adv Sci 5(3):1700550. https://doi.org/10.1002/advs.201700550

    Article  Google Scholar 

  58. Osidak EO, Kozhukhov VI, Osidak MS et al (2020) Collagen as bioink for bioprinting: a comprehensive review. Int J Bioprint 6(3):270. https://doi.org/10.18063/ijb.v6i3.270

  59. Guo K, Wang H, Li S et al (2021) Collagen-based thiol-norbornene photoclick bio-ink with excellent bioactivity and printability. ACS Appl Mater Interfaces 13(6):7037–7050. https://doi.org/10.1021/acsami.0c16714

    Article  Google Scholar 

  60. Kolesky DB, Truby RL, Gladman AS et al (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26(19):3124–3130. https://doi.org/10.1002/adma.201305506

    Article  Google Scholar 

  61. Schuurman W, Levett PA, Pot MW et al (2013) Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Macromol Biosci 13(5):551–561. https://doi.org/10.1002/mabi.201200471

    Article  Google Scholar 

  62. Gao Q, Niu X, Shao L et al (2019) 3D printing of complex GelMA-based scaffolds with nanoclay. Biofabrication 11:035006. https://doi.org/10.1088/1758-5090/ab0cf6

  63. Chen Z, Zhao D, Liu B et al (2019) 3D printing of multifunctional hydrogels. Adv Funct Mater 29(20):1900971. https://doi.org/10.1002/adfm.201900971

    Article  Google Scholar 

  64. Liu W, Heinrich MA, Zhou Y et al (2017) Extrusion bioprinting of shear-thinning gelatin methacryloyl bioinks. Adv Healthc Mater 6(12):1601451. https://doi.org/10.1002/adhm.201601451

    Article  Google Scholar 

  65. Zhou M, Lee BH, Tan YJ et al (2019) Microbial transglutaminase induced controlled crosslinking of gelatin methacryloyl to tailor rheological properties for 3D printing. Biofabrication 11(2):025011. https://doi.org/10.1088/1758-5090/ab063f

    Article  Google Scholar 

  66. He H, Li D, Lin Z et al (2020) Temperature-programmable and enzymatically solidifiable gelatin-based bioinks enable facile extrusion bioprinting. Biofabrication 12(4):045003. https://doi.org/10.1088/1758-5090/ab9906

  67. Song K, Compaan AM, Chai W et al (2020) Injectable gelatin microgel-based composite ink for 3D bioprinting in air. ACS Appl Mater Interfaces 12(20):22453–22466. https://doi.org/10.1021/acsami.0c01497

    Article  Google Scholar 

  68. Song K, Ren B, Zhai Y et al (2021) Effects of transglutaminase cross-linking process on printability of gelatin microgel-gelatin solution composite bioink. Biofabrication 14(1):015014. https://doi.org/10.1088/1758-5090/ac3d75

  69. Fang Y, Guo Y, Ji M et al (2021) 3D printing of cell-laden microgel-based biphasic bioink with heterogeneous microenvironment for biomedical applications. Adv Funct Mater 32(13):2109810. https://doi.org/10.1002/adfm.202109810

    Article  Google Scholar 

  70. Xie M, Shi Y, Zhang C et al (2022) In situ 3D bioprinting with bioconcrete bioink. Nat Commun 13(1):3597. https://doi.org/10.1038/s41467-022-30997-y

    Article  Google Scholar 

  71. Distler T, Solisito AA, Schneidereit D et al (2020) 3D printed oxidized alginate-gelatin bioink provides guidance for C2C12 muscle precursor cell orientation and differentiation via shear stress during bioprinting. Biofabrication 12(4):045005. https://doi.org/10.1088/1758-5090/ab98e4

  72. Yao B, Hu T, Cui X et al (2019) Enzymatically degradable alginate/gelatin bioink promotes cellular behavior and degradation in vitro and in vivo. Biofabrication 11(4):045020. https://doi.org/10.1088/1758-5090/ab38ef

  73. Wust S, Godla ME, Muller R et al (2014) Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Acta Biomater 10(2):630–640. https://doi.org/10.1016/j.actbio.2013.10.016

    Article  Google Scholar 

  74. Bilici C, Tatar AG, Senturk E et al (2022) Bisulfite-initiated crosslinking of gelatin methacryloyl hydrogels for embedded 3D bioprinting. Biofabrication 14(2):025011. https://doi.org/10.1088/1758-5090/ac4dd9

  75. Yin J, Yan M, Wang Y et al (2018) 3D bioprinting of low-concentration cell-laden gelatin methacrylate (GelMA) bioinks with a two-step cross-linking strategy. ACS Appl Mater Interfaces 10(8):6849–6857. https://doi.org/10.1021/acsami.7b16059

    Article  Google Scholar 

  76. Bertlein S, Brown G, Lim KS et al (2017) Thiol-ene clickable gelatin: a platform bioink for multiple 3D biofabrication technologies. Adv Mater 29(44):1703404. https://doi.org/10.1002/adma.201703404

    Article  Google Scholar 

  77. Shams E, Barzad MS, Mohamadnia S et al (2022) A review on alginate-based bioinks, combination with other natural biomaterials and characteristics. J Biomater Appl 37(2):355–372. https://doi.org/10.1177/08853282221085690

    Article  Google Scholar 

  78. Zhao Y, Li Y, Mao S et al (2015) The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication 7(4):045002. https://doi.org/10.1088/1758-5090/7/4/045002

  79. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773–785. https://doi.org/10.1038/nbt.2958

    Article  Google Scholar 

  80. Robert C, Jae N, Wei S (2008) Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng Part A 14(1):41–48

    Google Scholar 

  81. Sakai S, Mochizuki K, Qu Y et al (2018) Peroxidase-catalyzed microextrusion bioprinting of cell-laden hydrogel constructs in vaporized ppm-level hydrogen peroxide. Biofabrication 10(4):045007. https://doi.org/10.1088/1758-5090/aadc9e

  82. Qin XH, Ovsianikov A, Stampfl J et al (2014) Additive manufacturing of photosensitive hydrogels for tissue engineering applications 15:49. https://doi.org/10.1515/bnm-2014-0008

    Article  Google Scholar 

  83. Kang LH, Armstrong PA, Lee LJ et al (2017) Optimizing photo-encapsulation viability of heart valve cell types in 3D printable composite hydrogels. Ann Biomed Eng 45(2):360–377. https://doi.org/10.1007/s10439-016-1619-1

    Article  Google Scholar 

  84. Han WT, Jang T, Chen S et al (2019) Improved cell viability for large-scale biofabrication with photo-crosslinkable hydrogel systems through a dual-photoinitiator approach. Biomater Sci 8(1):450–461. https://doi.org/10.1039/c9bm01347d

    Article  Google Scholar 

  85. Xu H, Casillas J, Krishnamoorthy S et al (2020) Effects of Irgacure 2959 and lithium phenyl-2,4,6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs. Biomed Mater 15(5):055021. https://doi.org/10.1088/1748-605X/ab954e

  86. Dahle J, Kvam E, Stokke T (2005) Bystander effects in UV-induced genomic instability: antioxidants inhibit delayed mutagenesis induced by ultraviolet A and B radiation. J Carcinog 4:11. https://doi.org/10.1186/1477-3163-4-11

    Article  Google Scholar 

  87. Lim KS, Schon BS, Mekhileri NV et al (2016) New visible-light photoinitiating system for improved print fidelity in gelatin-based bioinks. ACS Biomater Sci Eng 2(10):1752–1762. https://doi.org/10.1021/acsbiomaterials.6b00149

    Article  Google Scholar 

  88. Wang Z, Abdulla R, Parker B et al (2015) A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7(4):045009. https://doi.org/10.1088/1758-5090/7/4/045009

  89. Sun JY, Zhao X, Illeperuma WRK et al (2012) Highly stretchable and tough hydrogels. Nature 489(7414):133–136. https://doi.org/10.1038/nature11409

    Article  Google Scholar 

  90. Chakraborty J, Ghosh S (2020) Cellular proliferation, self-assembly, and modulation of signaling pathways in silk fibroin gelatin-based 3D bioprinted constructs. ACS Appl Bio Mater 3(12):8309–8320. https://doi.org/10.1021/acsabm.0c01252

    Article  Google Scholar 

  91. Kim SH, Hong H, Ajiteru O et al (2021) 3D bioprinted silk fibroin hydrogels for tissue engineering. Nat Protoc 16(12):5484–5532. https://doi.org/10.1038/s41596-021-00622-1

    Article  Google Scholar 

  92. Castilho M, Levato R, Bernal PN et al (2021) Hydrogel-based bioinks for cell electrowriting of well-organized living structures with micrometer-scale resolution. Biomacromol 22(2):855–866. https://doi.org/10.1021/acs.biomac.0c01577

    Article  Google Scholar 

  93. Trucco D, Sharma A, Manferdini C et al (2021) Modeling and fabrication of silk fibroin-gelatin-based constructs using extrusion-based three-dimensional bioprinting. ACS Biomater Sci Eng 7(7):3306–3320. https://doi.org/10.1021/acsbiomaterials.1c00410

    Article  Google Scholar 

  94. Flores-Torres S, Peza-Chavez O, Kuasne H et al (2021) Alginate-gelatin-Matrigel hydrogels enable the development and multigenerational passaging of patient-derived 3D bioprinted cancer spheroid models. Biofabrication 13(2):025001. https://doi.org/10.1088/1758-5090/abdb87

  95. Zhang J, Eyisoylu H, Qin XH et al (2021) 3D bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Acta Biomater 121:637–652. https://doi.org/10.1016/j.actbio.2020.12.026

    Article  Google Scholar 

  96. Wang B, Diaz-Payno PJ, Browe DC et al (2021) Affinity-bound growth factor within sulfated interpenetrating network bioinks for bioprinting cartilaginous tissues. Acta Biomater 128:130–142. https://doi.org/10.1016/j.actbio.2021.04.016

    Article  Google Scholar 

  97. Hong S, Song JM (2022) 3D bioprinted drug-resistant breast cancer spheroids for quantitative in situ evaluation of drug resistance. Acta Biomater 138:228–239. https://doi.org/10.1016/j.actbio.2021.10.031

    Article  Google Scholar 

  98. Labowska MB, Cierluk K, Jankowska AM et al (2021) A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Materials 14(4):858. https://doi.org/10.3390/ma14040858

    Article  Google Scholar 

  99. Zhu H, Monavari M, Zheng K et al (2022) 3D bioprinting of multifunctional dynamic nanocomposite bioinks incorporating Cu-doped mesoporous bioactive glass nanoparticles for bone tissue engineering. Small 18(12):2104996. https://doi.org/10.1002/smll.202104996

  100. Rakin RH, Kumar H, Rajeev A et al (2021) Tunable metacrylated hyaluronic acid-based hybrid bioinks for stereolithography 3D bioprinting. Biofabrication 13(4):044109. https://doi.org/10.1088/1758-5090/ac25cb

  101. Freeman S, Ramos R, Alexis Chando P et al (2019) A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Acta Biomater 95:152–164. https://doi.org/10.1016/j.actbio.2019.06.052

    Article  Google Scholar 

  102. Gong C, Kong Z, Wang X (2021) The effect of agarose on 3D bioprinting. Polymers 13(22):4028. https://doi.org/10.3390/polym13224028

    Article  Google Scholar 

  103. Di Giuseppe M, Law N, Webb B et al (2018) Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J Mech Behav Mater 79:150–157. https://doi.org/10.1016/j.jmbbm.2017.12.018

    Article  Google Scholar 

  104. Shi L, Xiong L, Hu Y et al (2018) Three-dimensional printing alginate/gelatin scaffolds as dermal substitutes for skin tissue engineering. Polym Eng Sci 58(10):1782–1790. https://doi.org/10.1002/pen.24779

    Article  Google Scholar 

  105. Pan T, Song W, Cao X et al (2016) 3D Bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties. J Mater Sci Technol 32(9):889–900. https://doi.org/10.1016/j.jmst.2016.01.007

    Article  Google Scholar 

  106. You F, Wu X, Kelly M et al (2020) Bioprinting and in vitro characterization of alginate dialdehyde-gelatin hydrogel bio-ink. Bio-Des Manuf 3(1):48–59. https://doi.org/10.1007/s42242-020-00058-8

    Article  Google Scholar 

  107. Li X, Wang X, Wang X et al (2018) 3D bioprinted rat Schwann cell-laden structures with shape flexibility and enhanced nerve growth factor expression. 3 Biotech 8(8):342. https://doi.org/10.1007/s13205-018-1341-9

  108. Hiller T, Berg J, Elomaa L et al (2018) Generation of a 3D liver model comprising human extracellular matrix in an alginate/gelatin-based bioink by extrusion bioprinting for infection and transduction studies. Int J Mol Sci 19(10):3129. https://doi.org/10.3390/ijms19103129

    Article  Google Scholar 

  109. Ding H, Chang RC (2018) Simulating image-guided in situ bioprinting of a skin graft onto a phantom burn wound bed. Addit Manuf 22:708–719. https://doi.org/10.1016/j.addma.2018.06.022

    Article  Google Scholar 

  110. Liu N, Huang S, Yao B et al (2016) 3D bioprinting matrices with controlled pore structure and release function guide in vitro self-organization of sweat gland. Sci Rep 6:34410. https://doi.org/10.1038/srep34410

  111. Zhao M, Wang J, Zhang J et al (2022) Functionalizing multi-component bioink with platelet-rich plasma for customized in-situ bilayer bioprinting for wound healing. Mater Today Bio 16:100334. https://doi.org/10.1016/j.mtbio.2022.100334

  112. Singh YP, Bandyopadhyay A, Mandal BB (2019) 3D bioprinting using cross-linker-free silk-gelatin bioink for cartilage tissue engineering. ACS Appl Mater Interfaces 11(37):33684–33696. https://doi.org/10.1021/acsami.9b11644

    Article  Google Scholar 

  113. Chawla S, Desando G, Gabusi E et al (2021) The effect of silk–gelatin bioink and TGF-β3 on mesenchymal stromal cells in 3D bioprinted chondrogenic constructs: a proteomic study. J Mater Res 36(19):4051–4067. https://doi.org/10.1557/s43578-021-00230-5

    Article  Google Scholar 

  114. Jose RR, Brown JE, Polido KE et al (2015) Polyol-silk bioink formulations as two-part room-temperature curable materials for 3D printing. ACS Biomater Sci Eng 1(9):780–788. https://doi.org/10.1021/acsbiomaterials.5b00160

    Article  Google Scholar 

  115. Rodriguez MJ, Brown J, Giordano J et al (2017) Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments. Biomaterials 117:105–115. https://doi.org/10.1016/j.biomaterials.2016.11.046

    Article  Google Scholar 

  116. Das S, Pati F, Choi YJ et al (2015) Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater 11:233–246. https://doi.org/10.1016/j.actbio.2014.09.023

    Article  Google Scholar 

  117. Chameettachal S, Midha S, Ghosh S (2016) Regulation of chondrogenesis and hypertrophy in silk fibroin-gelatin-based 3D bioprinted constructs. ACS Biomater Sci Eng 2(9):1450–1463. https://doi.org/10.1021/acsbiomaterials.6b00152

    Article  Google Scholar 

  118. Shi W, Sun M, Hu X et al (2017) Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv Mater 29(29):1701089. https://doi.org/10.1002/adma.201701089

    Article  Google Scholar 

  119. Irvine SA, Agrawal A, Lee BH et al (2015) Printing cell-laden gelatin constructs by free-form fabrication and enzymatic protein crosslinking. Biomed Microdevices 17(1):16. https://doi.org/10.1007/s10544-014-9915-8

    Article  Google Scholar 

  120. Du Z, Li N, Hua Y et al (2017) Physiological pH-dependent gelation for 3D printing based on the phase separation of gelatin and oxidized dextran. Chem Commun 53(97):13023–13026. https://doi.org/10.1039/c7cc08225h

    Article  Google Scholar 

  121. Prince E, Alizadehgiashi M, Campbell M et al (2018) Patterning of structurally anisotropic composite hydrogel sheets. Biomacromol 19(4):1276–1284. https://doi.org/10.1021/acs.biomac.8b00100

    Article  Google Scholar 

  122. Heo DN, Alioglu MA, Wu Y et al (2020) 3D bioprinting of carbohydrazide-modified gelatin into microparticle-suspended oxidized alginate for the fabrication of complex-shaped tissue constructs. ACS Appl Mater Interfaces 12(18):20295–20306. https://doi.org/10.1021/acsami.0c05096

    Article  Google Scholar 

  123. De Moor L, Smet J, Plovyt M et al (2021) Engineering microvasculature by 3D bioprinting of prevascularized spheroids in photo-crosslinkable gelatin. Biofabrication 13(4):045021. https://doi.org/10.1088/1758-5090/ac24de

  124. Feng Q, Li D, Li Q et al (2022) Assembling microgels via dynamic cross-linking reaction improves printability, microporosity, tissue-adhesion, and self-healing of microgel bioink for extrusion bioprinting. ACS Appl Mater Interfaces 14(13):15653–15666. https://doi.org/10.1021/acsami.2c01295

    Article  Google Scholar 

  125. Sun X, Ma Z, Zhao X et al (2021) Three-dimensional bioprinting of multicell-laden scaffolds containing bone morphogenic protein-4 for promoting M2 macrophage polarization and accelerating bone defect repair in diabetes mellitus. Bioact Mater 6(3):757–769. https://doi.org/10.1016/j.bioactmat.2020.08.030

    Article  Google Scholar 

  126. Ning L, Mehta R, Cao C et al (2020) Embedded 3D bioprinting of gelatin methacryloyl-based constructs with highly tunable structural fidelity. ACS Appl Mater Interfaces 12(40):44563–44577. https://doi.org/10.1021/acsami.0c15078

    Article  Google Scholar 

  127. Martyniak K, Lokshina A, Cruz MA et al (2022) Biomaterial composition and stiffness as decisive properties of 3D bioprinted constructs for type II collagen stimulation. Acta Biomater 152:221–234. https://doi.org/10.1016/j.actbio.2022.08.058

    Article  Google Scholar 

  128. Xie M, Yu K, Sun Y et al (2019) Protocols of 3D bioprinting of gelatin methacryloyl hydrogel based bioinks. J Vis Exp 154:1–16. https://doi.org/10.3791/60545

    Article  Google Scholar 

  129. Raveendran N, Ivanovski S, Vaquette C (2022) The effect of culture conditions on the bone regeneration potential of osteoblast-laden 3D bioprinted constructs. Acta Biomater 156:190–201. https://doi.org/10.1016/j.actbio.2022.09.042

    Article  Google Scholar 

  130. Gu Y, Zhang L, Du X et al (2018) Reversible physical crosslinking strategy with optimal temperature for 3D bioprinting of human chondrocyte-laden gelatin methacryloyl bioink. J Biomater Appl 33(5):609–618. https://doi.org/10.1177/0885328218805864

    Article  Google Scholar 

  131. Ouyang L, Highley CB, Sun W et al (2017) A generalizable strategy for the 3D bioprinting of hydrogels from nonviscous photo-crosslinkable inks. Adv Mater 29(8):1604983. https://doi.org/10.1002/adma.201604983

    Article  Google Scholar 

  132. Muzzarelli RAA, Greco F, Busilacchi A et al (2012) Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a review. Carbohydr Polym 89(3):723–739. https://doi.org/10.1016/j.carbpol.2012.04.057

    Article  Google Scholar 

  133. Xia H, Zhao D, Zhu H et al (2018) Lyophilized scaffolds fabricated from 3D-printed photocurable natural hydrogel for cartilage regeneration. ACS Appl Mater Interfaces 10(37):31704–31715. https://doi.org/10.1021/acsami.8b10926

    Article  Google Scholar 

  134. van der Valk DC, van der Ven CFT, Blaser MC et al (2018) Engineering a 3D-bioprinted model of human heart valve disease using nanoindentation-based biomechanics. Nanomaterials 8(5):296. https://doi.org/10.3390/nano8050296

    Article  Google Scholar 

  135. Mouser VHM, Levato R, Mensinga A et al (2018) Bio-ink development for three-dimensional bioprinting of hetero-cellular cartilage constructs. Connect Tissue Res 61(2):137–151. https://doi.org/10.1080/03008207.2018.1553960

    Article  Google Scholar 

  136. García-Lizarribar A, Fernandez-Garibay X, Velasco-Mallorqui F et al (2018) Composite biomaterials as long-lasting scaffolds for 3D bioprinting of highly aligned muscle tissue. Macromol Biosci 18(10):1800167. https://doi.org/10.1002/mabi.201800167

    Article  Google Scholar 

  137. Gao C, Li Y, Liu X et al (2023) 3D bioprinted conductive spinal cord biomimetic scaffolds for promoting neuronal differentiation of neural stem cells and repairing of spinal cord injury. Chem Eng J 451:138788. https://doi.org/10.1016/j.cej.2022.138788

  138. Jin Y, Liu C, Chai W et al (2017) Self-supporting nanoclay as internal scaffold material for direct printing of soft hydrogel composite structures in air. ACS Appl Mater Interfaces 9(20):17457–17466. https://doi.org/10.1021/acsami.7b03613

    Article  Google Scholar 

  139. Cidonio G, Alcala-Orozco CR, Lim KS et al (2019) Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinks. Biofabrication 11(3):035027. https://doi.org/10.1088/1758-5090/ab19fd

  140. Liu C, Dai T, Wu X et al (2023) 3D bioprinting of cell-laden nano-attapulgite/gelatin methacrylate composite hydrogel scaffolds for bone tissue repair. J Mater Sci Technol 135:111–125. https://doi.org/10.1016/j.jmst.2022.07.011

    Article  Google Scholar 

  141. Haring AP, Thompson EG, Tong Y et al (2019) Process- and bio-inspired hydrogels for 3D bioprinting of soft free-standing neural and glial tissues. Biofabrication 11(2):025009. https://doi.org/10.1088/1758-5090/ab02c9

  142. Zhou X, Cui H, Nowicki M et al (2018) Three-dimensional-bioprinted dopamine-based matrix for promoting neural regeneration. ACS Appl Mater Interfaces 10(10):8993–9001. https://doi.org/10.1021/acsami.7b18197

    Article  Google Scholar 

  143. Shin M, Galarraga JH, Kwon MY et al (2018) Gallol-derived ECM-mimetic adhesive bioinks exhibiting temporal shear-thinning and stabilization behavior. Acta Biomater 96(1):165–175. https://doi.org/10.1016/j.actbio.2018.10.028

    Article  Google Scholar 

  144. Sakai S, Ueda K, Gantumur E et al (2018) Drop-on-drop multimaterial 3D bioprinting realized by peroxidase-mediated cross-linking. Macromol Rapid Commun 39(3):1700534. https://doi.org/10.1002/marc.201700534

    Article  Google Scholar 

  145. Sakai S, Ohi H, Hotta T et al (2018) Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking. Biopolymers 109(2):e23080. https://doi.org/10.1002/bip.23080

  146. Lowe AB, Hoyle CE, Bowman CN (2010) Thiol-yne click chemistry: a powerful and versatile methodology for materials synthesis. J Mater Chem 20(23):4745–4750. https://doi.org/10.1039/b917102a

    Article  Google Scholar 

  147. Hoyle CE, Bowman CN (2010) Thiol-ene click chemistry. Angew Chem Int Ed 49(9):1540–1573. https://doi.org/10.1002/anie.200903924

    Article  Google Scholar 

  148. Stichler S, Jungst T, Schamel M et al (2017) Thiol-ene clickable poly(glycidol) hydrogels for biofabrication. Ann Biomed Eng 45(1):273–285. https://doi.org/10.1007/s10439-016-1633-3

    Article  Google Scholar 

  149. Ying GL, Jiang N, Mahar S et al (2018) Aqueous two-phase emulsion bioink-enabled 3D bioprinting of porous hydrogels. Adv Mater 30(50):1805460. https://doi.org/10.1002/adma.201805460

    Article  Google Scholar 

  150. Shao L, Gao Q, Xie C et al (2020) Sacrificial microgel-laden bioink-enabled 3D bioprinting of mesoscale pore networks. Bio-Des Manuf 3(1):30–39. https://doi.org/10.1007/s42242-020-00062-y

    Article  Google Scholar 

  151. Byambaa B, Annabi N, Yue K et al (2017) Bioprinted osteogenic and vasculogenic patterns for engineering 3D bone tissue. Adv Healthc Mater 6(16):1700015. https://doi.org/10.1002/adhm.201700015

    Article  Google Scholar 

  152. Ouyang L, Armstrong JPK, Chen Q et al (2020) Void-free 3D bioprinting for in-situ endothelialization and microfluidic perfusion. Adv Funct Mater 30(1):1908349. https://doi.org/10.1002/adfm.201908349

    Article  Google Scholar 

  153. Shao L, Gao Q, Xie C et al (2020) Directly coaxial 3D bioprinting of large-scale vascularized tissue constructs. Biofabrication 12(3):035014. https://doi.org/10.1088/1758-5090/ab7e76

  154. Taymour R, Chicaiza-Cabezas NA, Gelinsky M et al (2022) Core-shell bioprinting of vascularized in vitro liver sinusoid models. Biofabrication 14(4):045019. https://doi.org/10.1088/1758-5090/ac9019

Download references

Acknowledgements

The authors gratefully acknowledged the support for this work from the National Key R&D Program of China (No. 2018YFA0703100), the National Natural Science Foundation of China (Nos. 32122046, 82072082, and 32000959), the Youth Innovation Promotion Association of CAS (No. 2019350), the Guangdong Natural Science Foundation (No. 2019A1515111197), and the Shenzhen Fundamental Research Foundation (Nos. JCYJ20190812162809131, JCYJ20200109114006014, JCYJ20210324113001005, and JCYJ20210324115814040).

Author information

Authors and Affiliations

Authors

Contributions

JRY, HMH, LZX and CSR contributed to conceptualization; JRY and CSR were involved in methodology; JRY and DL assisted in formal analysis; JRY and CSR acquired the funding; JRY, DL and QZ contributed to investigation; DL and QZ were involved in project administration; JRY and HMH contributed to writing—original draft preparation; JRY and CSR assisted in writing—review and editing; QZ provided sources; LZX and CSR performed supervision. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Changshun Ruan.

Ethics declarations

Conflict of interest

CSR is an Associate Editor of Bio-Design and Manufacturing. The authors declare that they have no conflict of interest.

Ethical approval

This study does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., He, H., Li, D. et al. Advanced strategies in the application of gelatin-based bioink for extrusion bioprinting. Bio-des. Manuf. 6, 586–608 (2023). https://doi.org/10.1007/s42242-023-00236-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-023-00236-4

Keywords

Navigation