Skip to main content
Log in

Recent progress in self-propelled particles

  • Special Column on the 34th NCHD (Guest Editor Zheng Ma)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Self-propelled particles are commonly found in a large number of planktonic organisms such as bacteria, fungi, and algae in nature, and researchers have taken a long interest in exploring their swimming mechanisms for more than a century. Especially in the past 20 years, with the development of computational fluid dynamics and flow display technology, as well as the need for the design of synthetic self-propelled particles and micro-swimming devices, self-propelled particles have become the forefront and hotspot of current research in the field of fluid mechanics. This paper first introduces the swimming characteristics of common self-propelled particles, leading to a classic “squirmer” type self-propelled particle model. On this basis, a systematic introduction and summary of the theoretical and numerical simulation research of “squirmer” will be conducted. Finally, the main challenges and opportunities faced by the current research will be summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Drescher K., Leptos K. C., Tuval I. et al. Dancing Volvox: Hydrodynamic bound states of swimming algae [J]. Physical Review Letters, 2009, 102(16): 168101.

    Article  Google Scholar 

  2. Yu T. S., Lauga E., Hosoi A. E. Experimental investigations of elastic tail propulsion at low Reynolds number [J]. Physics of Fluids, 2006, 18(9): 091701.

    Article  Google Scholar 

  3. Brennen C., Winet H. Fluid mechanics of propulsion by cilia and flagella [J]. Annual Review of Fluid Mechanics, 1977, 9(1): 339–398.

    Article  Google Scholar 

  4. Ajdari A., Stone H. A. A note on swimming using internally generated traveling waves [J]. Physics of Fluids, 1999, 11(5): 1275–1277.

    Article  Google Scholar 

  5. Paxton W. F., Kistler K. C., Olmeda C. C. et al. Catalytic nanomotors: Autonomous movement of striped nanorods [J]. Journal of the American Chemical Society, 2004, 126(41): 13424–13431.

    Article  Google Scholar 

  6. Golestanian R., Liverpool T. B., Ajdari A. Propulsion of a molecular machine by asymmetric distribution of reaction products [J]. Physical Review Letters, 2005, 94(22): 220801.

    Article  Google Scholar 

  7. Gouin E., Welch M. D., Cossart P. Actin-based motility of intracellular pathogens [J]. Current Opinion in Microbiology, 2005, 8(1): 35–45.

    Article  Google Scholar 

  8. Leshansky A. M. Actin-based propulsion of a micro-swimmer [J]. Physical Review E, 2006, 74(1): 012901.

    Article  MathSciNet  Google Scholar 

  9. Schmittmann B., Zia R. Statistical mechanics of driven diffusive systems [J]. Phase Transitions and Critical Phenomena, 1995, 17: 3–214.

    Article  Google Scholar 

  10. Marchetti M. C., Joanny J. F., Ramaswamy S. et al. Hydrodynamics of soft active matter [J]. Reviews of Modern Physics, 2013, 85(3): 1143.

    Article  Google Scholar 

  11. Wu X. L., Libchaber A. Particle diffusion in a quasi-two-dimensional bacterial bath [J]. Physical Review Letters, 2000, 84(13): 3017.

    Article  Google Scholar 

  12. Kim M. J., Breuer K. S. Enhanced diffusion due to motile bacteria [J]. Physics of fluids, 2004, 16(9): L78–L81.

    Article  Google Scholar 

  13. Hernández-Ortiz J. P., Stoltz C. G., Graham M. D. Transport and collective dynamics in suspensions of confined swimming particles [J]. Physical Review Letters, 2005, 95(20): 204501.

    Article  Google Scholar 

  14. Underhill P. T., Hernandezortiz J. P., Graham M. D. Diffusion and spatial correlations in suspensions of swimming particles [J]. Physical Review Letters, 2008, 100(24): 248101.

    Article  Google Scholar 

  15. Kuznetsov A. V. Bio-thermal convection induced by two different species of microorganisms [J]. International Communications in Heat and Mass Transfer, 2011, 38(5): 548–553.

    Article  Google Scholar 

  16. Dombrowski C., Cisneros L., Chatkaew S. et al. Self-concentration and large-scale coherence in bacterial dynamics [J]. Physical Review Letters, 2004, 93(9): 098103.

    Article  Google Scholar 

  17. Riedel I. H., Kruse K., Howard, J. A self-organized vortex array of hydrodynamically entrained sperm cells [J]. Science, 2005, 309(5732): 300–303.

    Article  Google Scholar 

  18. Ford L. E. Mechanics of motor proteins and the cytoskeleton (review) [J]. Perspectives in Biology and Medicine, 2002, 45(2): 305–307.

    Article  Google Scholar 

  19. Baskaran A., Marchetti M. C. Statistical mechanics and hydrodynamics of bacterial suspensions [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(37): 15567–15572..

    Article  Google Scholar 

  20. Ramaswamy S. The mechanics and statistics of active matter [J]. Annual Review of Condensed Matter Physics, 2010, 1(1): 323–345.

    Article  Google Scholar 

  21. Durkin D., Fajans J. Experiments on two-dimensional vortex patterns [J]. Physics of Fluids, 2000, 12(2): 289–293.

    Article  Google Scholar 

  22. Lighthill M. J. On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers [J]. Communications on Pure and Applied Mathematics, 1952, 5(2): 109–118.

    Article  MathSciNet  Google Scholar 

  23. Blake J. R. A spherical envelope approach to ciliary propulsion [J]. Journal of Fluid Mechanics, 1971, 46(1): 199–208.

    Article  Google Scholar 

  24. Chisholm N. G., Legendre D., Lauga E. A squirmer across Reynolds numbers [J]. Journal of Fluid Mechanics, 2016, 796: 233–256.

    Article  MathSciNet  Google Scholar 

  25. Magar V., Goto T., Pedley T. J. Nutrient uptake by a self-propelled steady squirmer [J]. Quarterly Journal of Mechanics and Applied Mathematics, 2003, 56(1): 65–91.

    Article  MathSciNet  Google Scholar 

  26. Ishikawa T., Hota M. Interaction of two swimming paramecia [J]. Journal of Experimental Biology, 2006, 209(22): 4452–4463.

    Article  Google Scholar 

  27. Ishikawa T., Pedley T. J. Diffusion of swimming model micro-organisms in a semi-dilute suspension [J]. Journal of Fluid Mechanics, 2007, 588: 437–462.

    Article  MathSciNet  Google Scholar 

  28. Hamel A., Fisch C., Combettes L. et al. Transitions between three swimming gaits in Paramecium escape [J]. Proceedings of the National Academy of Sciences, 2011, 108(18): 7290–7295.

    Article  Google Scholar 

  29. Gagnon D. A., Keim N. C., Arratia P. E. Undulatory swimming in shear-thinning fluids: Experiments with caenorhabditis elegans [J]. Journal of Fluid Mechanics, 2014, 758: R3.

    Article  MathSciNet  Google Scholar 

  30. Wickramarathna L. N., Noss C., Lorke A. Hydrodynamic trails produced by daphnia: Size and energetics [J]. PLoS ONE, 2014, 9(3): e92383.

    Article  Google Scholar 

  31. Ishikawa T., Hota M. Interaction of two swimming para-mecia [J]. Journal of Experimental Biology, 2006, 209(22): 4452–4463.

    Article  Google Scholar 

  32. Kiørboe T., Jiang H., Colin S. P. Danger of zooplankton feeding: The fluid signal generated by ambush-feeding copepods [J]. Proceedings of the Royal Society B: Biological Sciences, 2010, 277(1698): 3229–3237.

    Article  Google Scholar 

  33. Wang S., Ardekani A. Inertial squirmer [J]. Physics of Fluid, 2012, 24(10): 101902.

    Article  Google Scholar 

  34. Khair A. S., Chisholm N. G. Expansions at small Reynolds numbers for the locomotionof a spherical squirmer [J]. Physics of Fluids, 2014, 26(1): 011902.

    Article  Google Scholar 

  35. Li G. J., Ostace A., Ardekani A. M. Hydrodynamic interaction of swimming organisms in an inertial regime [J]. Physical Review E, 2016, 94(5): 053104.

    Article  Google Scholar 

  36. Ouyang Z., Lin J. Z., Ku X. K. The hydrodynamic behavior of a squirmer swimming in power-law fluid [J]. Physics of Fluids, 2018, 30(8): 083301.

    Article  Google Scholar 

  37. Ouyang Z., Lin J. Z., Ku X. K. Hydrodynamic properties of squirmer swimming in power-law fluid near a wall [J]. Rheologica Acta, 2018, 57: 655–671.

    Article  Google Scholar 

  38. Ouyang Z., Lin J., Ku X. K. Hydrodynamic interaction between a pair of swimmers in power-law fluid [J]. International Journal of Non-Linear Mechanics, 2019, 108: 72–80.

    Article  Google Scholar 

  39. More R. V., Ardekani A. M. Motion of an inertial squirmer in a density-stratified fluid [J]. Journal of Fluid Mechanics, 2020, 905: A9.

    Article  MathSciNet  Google Scholar 

  40. Ouyang Z., Lin J. The hydrodynamics of an inertial squirmer rod [J]. Physics of Fluids, 2021, 33(7): 073302.

    Article  Google Scholar 

  41. Ouyang Z., Phan-Thien N. Inertial swimming in a channel filled with power-law fluids [J]. Physics of Fluids, 2021, 33(11): 113312.

    Article  Google Scholar 

  42. Ouyang Z., Lin Z., Yu Z. et al. Hydrodynamics of an inertial squirmer and squirmer dumbbell in a tube [J]. Journal of Fluid Mechanics, 2022, 939: A32.

    Article  MathSciNet  Google Scholar 

  43. Ouyang Z., Lin J., Phan-Thien N. Swimming of an inertial squirmer array in a Newtonian fluid [J]. Physics of Fluids, 2022, 34(5): 053303.

    Article  Google Scholar 

  44. Ouyang Z., Lin Z., Yu Z. et al. Cargo carrying with an inertial squirmer in a Newtonian fluid [J]. Journal of Fluid Mechanics, 2023, 959: A25.

    Article  MathSciNet  Google Scholar 

  45. Zhu L. L., Lauga E., Brandt L. Self-propulsion in viscoelastic fluids: Pushers vs. pullers [J]. Physics of Fluids, 2012, 24(5): 051902.

    Article  Google Scholar 

  46. Yazdi S., Ardekani A. M., Borhan A. Locomotion of microorganisms near a no-slip boundary in a viscoelastic fluid [J]. Physical Review E, 2014, 90(4): 043002.

    Article  Google Scholar 

  47. Li G., Karim A., Ardekani A. M. Effect of solid boundaries on swimming dynamics of microorganisms in a viscoelastic fluid [J]. Rheologica Acta, 2014, 53: 911–926.

    Article  Google Scholar 

  48. Yazdi S., Ardekani A. M., Borhan A. Swimming dynamics near a wall in a weakly elastic fluid [J]. Journal of Nonlinear Science, 2015, 25: 1153–1167.

    Article  MathSciNet  Google Scholar 

  49. Yazdi S., Borhan A. Effect of a planar interface on time-averaged locomotion of a spherical squirmer in a viscoelastic fluid [J]. Physics of Fluids, 2017, 29(9): 093104.

    Article  Google Scholar 

  50. Datt C., Zhu L., Elfring G. J. et al. Squirming through shear-thinning fluids [J]. Journal of Fluid Mechanics, 2015, 784: R1.

    Article  MathSciNet  Google Scholar 

  51. De Corato M., Greco F., Maffettone P. L. Locomotion of a microorganism in weakly viscoelastic liquids [J]. Physical Review E, 2015, 92(5): 053008.

    Article  MathSciNet  Google Scholar 

  52. Corato M. D., D’Avino G. Dynamics of a microorganism in a sheared viscoelastic liquid [J]. Soft Matter, 2016, 13(1): 196–211.

    Article  Google Scholar 

  53. Nganguia H., Pak O. S. Squirming motion in a Brinkman medium [J]. Journal of Fluid Mechanics, 2018, 855: 554–573.

    Article  MathSciNet  Google Scholar 

  54. Binagia J. P., Phoa A., Housiadas K. D. et al. Swimming with swirl in a viscoelastic fluid [J]. Journal of Fluid Mechanics, 2020, 900: A4.

    Article  MathSciNet  Google Scholar 

  55. Nganguia H., Zheng K., Chen Y. et al. A note on a swirling squirmer in a shear-thinning fluid [J]. Physics of Fluids, 2020, 32(11): 111906.

    Article  Google Scholar 

  56. Housiadas K. D. An active body in a phan-thien and tanner fluid: The effect of the third polar squirming mode [J]. Physics of Fluids, 2021, 33(4): 043110.

    Article  Google Scholar 

  57. Housiadas K. D., Binagia J. P., Shaqfeh E. S. G. Squirmers with swirl at low Weissenberg number [J]. Journal of Fluid Mechanics, 2021, 911: A16.

    Article  MathSciNet  Google Scholar 

  58. Li G., Ardekani A. M. Hydrodynamic interaction of microswimmers near a wall [J]. Physical Review E, 2014, 90(1): 013010.

    Article  Google Scholar 

  59. Crowdy D. G., Or Y. Two-dimensional point singularity model of a low-Reynolds-number swimmer near a wall [J]. Physical Review E, 2010, 81(3): 036313.

    Article  Google Scholar 

  60. Crowdy D. Treadmilling swimmers near a no-slip wall at low Reynolds number [J]. International Journal of Non-Linear Mechanics, 2011, 46(4): 577–585.

    Article  Google Scholar 

  61. Crowdy D., Samson O. Hydrodynamic bound states of a low-Reynolds-number swimmer near a gap in a wall [J]. Journal of Fluid Mechanics, 2011, 667(1): 309–335.

    Article  MathSciNet  Google Scholar 

  62. Crowdy D., Lee S., Samson O. et al. A two-dimensional model of low-Reynolds number swimming beneath a free surface [J]. Journal of Fluid Mechanics, 2011, 681(2): 24–47.

    Article  MathSciNet  Google Scholar 

  63. Ishimoto K., Crowdy D. G. Dynamics of a treadmilling microswimmer near a no-slip wall in simple shear [J]. Journal of Fluid Mechanics, 2017, 821: 647–667.

    Article  MathSciNet  Google Scholar 

  64. Ye H., Lin J., Ouyang Z. The hydrodynamics of a rod-shaped squirmer near a wall [J]. Processes, 2022, 10(9): 1841.

    Article  Google Scholar 

  65. Qi T., Lin J., Ouyang Z. Hydrodynamic behavior of self-propelled particles in a simple shear flow [J]. Entropy, 2022, 24(7): 854.

    Article  Google Scholar 

  66. Winet H. Wall drag on free-moving ciliated microorganisms [J]. Journal of Experimental Biology, 1973, 59(3): 753–766.

    Article  Google Scholar 

  67. Jana S., Um S. H., Jung S. Paramecium swimming in capillary tube [J]. Physics of Fluids, 2012, 24(4): 041901.

    Article  Google Scholar 

  68. Zhu L., Lauga E., Brandt L. Low Reynolds number swimming in a capillary tube [J]. Journal of Fluid Mechanics, 2013, 726: 285–311.

    Article  MathSciNet  Google Scholar 

  69. Zöttl A., Stark H. Nonlinear dynamics of a microswimmer in Poiseuille flow [J]. Physical Review Letters, 2012, 108(21): 218104.

    Article  Google Scholar 

  70. Jiang W., Chen G. Dispersion of active particles in confined unidirectional flows [J]. Journal of Fluid Mechanics, 2019, 877: 1–34.

    Article  MathSciNet  Google Scholar 

  71. Ouyang Z., Lin J. Migration of a micro-swimmer in a channel flow [J]. Powder Technology, 2021, 392: 587–600.

    Article  Google Scholar 

  72. Rühle F., Blaschke J., Kuhr J. et al. Gravity-induced dynamics of a squirmer microswimmer in wall proximity [J]. New Journal of Physics, 2018, 20(2): 025003.

    Article  Google Scholar 

  73. Fadda F., Molina J., Yamamoto R. Dynamics of a chiral swimmer sedimenting on a flat plate [J]. Physical Review E, 2020, 101(5): 052608.

    Article  Google Scholar 

  74. Ouyang Z., Lin J. Behaviors of a settling microswimmer in a narrow vertical channel [J]. Powder Technology, 2021, 398: 117042.

    Article  Google Scholar 

  75. Qi T., Lin J., Ouyang Z. et al. Settling mode of a bottom-heavy squirmer in a narrow vessel [J]. Soft Matter, 2023, 19(4): 652–669.

    Article  Google Scholar 

  76. Guan G., Lin J., Nie D. Swimming mode of two interacting squirmers under gravity in a narrow vertical channel [J]. Entropy, 2022, 24(11): 1564.

    Article  MathSciNet  Google Scholar 

  77. Nie D., Ying Y., Guan G. et al. Two-dimensional study on the motion and interactions of squirmers under gravity in a vertical channel [J]. Journal of Fluid Mechanics, 2023, 960: A31.

    Article  MathSciNet  Google Scholar 

  78. Ying Y., Jiang T., Nie D. et al. Study on the sedimentation and interaction of two squirmers in a vertical channel [J]. Physics of Fluids, 2022, 34(10): 103315.

    Article  Google Scholar 

  79. Doostmohammadi A., Ignés-Mullol J., Yeomans J. M. et al. Active nematics [J]. Nature Communications, 2018, 9(1): 1–13.

    Article  Google Scholar 

  80. Ladoux B., Mège R. Mechanobiology of collective cell behaviours [J]. Nature Reviews Molecular Cell Biology, 2017, 18(12): 743–757.

    Article  Google Scholar 

  81. Wolf K., Wu Y. I., Liu Y. et al. Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion [J]. Nature Cell Biology, 2007, 9(8): 893–904.

    Article  Google Scholar 

  82. Poujade M., Grasland-Mongrain E., Hertzog A. et al. Collective migration of an epithelial monolayer in response to a model wound [J]. Proceedings of the National Academy of Sciences, 2007, 104(41): 15988–15993.

    Article  Google Scholar 

  83. Etournay R., Popović M., Merkel M. et al. Interplay of cell dynamics and epithelial tension during morphogenesis of the drosophila pupal wing [J]. Elife, 2015, 4: e07090.

    Article  Google Scholar 

  84. Alert R., Casademunt J., Joanny J. Active turbulence [J]. Annual Review of Condensed Matter Physics, 2021, 13(1): 143–170.

    Article  Google Scholar 

  85. Thampi S., Yeomans J. Active turbulence in active nematics [J]. The European Physical Journal Special Topics, 2016, 225(4): 651–662.

    Article  Google Scholar 

  86. Wensink H. H., Dunkel J., Heidenreich S. et al. Mesoscale turbulence in living fluids [J]. Proceedings of the National Academy of Sciences, 2012, 109(36): 14308–14313.

    Article  Google Scholar 

  87. Drescher K., Dunkel J., Cisneros L. H. et al. Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering [J]. Proceedings of the national academy of sciences, 2011, 108(27): 10940–10945.

    Article  Google Scholar 

  88. Hu J., Wysocki A., Winkler R. G. et al. Physical sensing of surface properties by microswimmers–directing bacterial motion via wall slip [J]. Scientific reports, 2015, 5(1): 9586.

    Article  Google Scholar 

  89. Lemelle L., Palierne J. F., Chatre E. et al. Curvature reversal of the circular motion of swimming bacteria probes for slip at solid/liquid interfaces [J]. Soft Matter, 2013, 9(41): 9759–9762.

    Article  Google Scholar 

  90. Reinken H., Klapp S. H., Bär M. et al. Derivation of a hydrodynamic theory for mesoscale dynamics in microswimmer suspensions [J]. Physical Review E, 2018, 97(2): 022613.

    Article  Google Scholar 

  91. Chen Q. S., Patelli A., Chaté H. et al. Fore-aft asymmetric flocking [J]. Physical Review E, 2017, 96(2): 020601.

    Article  Google Scholar 

  92. Marchetti M. C., Fily Y., Henkes S. et al. Minimal model of active colloids highlights the role of mechanical interactions in controlling the emergent behavior of active matter [J]. Current Opinion in Colloid and Interface Science, 2016, 21: 34–43.

    Article  Google Scholar 

  93. Wysocki A., Winkler R. G., Gompper G. Propagating interfaces in mixtures of active and passive Brownian particles [J]. New Journal of Physics, 2016, 18(12): 123030.

    Article  Google Scholar 

  94. Cates M. E., Tailleur J. Motility-induced phase separation [J]. Annual Review Condensed Matter Physics, 2015, 6(1): 219–244.

    Article  Google Scholar 

  95. Abkenar M., Marx K., Auth T. et al. Collective behavior of penetrable self-propelled rods in two dimensions [J]. Physical Review E, 2013, 88(6): 062314.

    Article  Google Scholar 

  96. Alarcón F., Valeriani C., Pagonabarraga I. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions [J]. Soft Matter, 2017, 13(4): 814–826.

    Article  Google Scholar 

  97. Delmotte B., Keaveny E. E., Plouraboué F. et al. Large-scale simulation of steady and time-dependent active suspensions with the force-coupling method [J]. Journal of Computational Physics, 2015, 302: 524–547.

    Article  MathSciNet  Google Scholar 

  98. Matas-Navarro R., Golestanian R., Liverpool T. B. et al. Hydrodynamic suppression of phase separation in active suspensions [J]. Physical Review E, 2014, 90(3): 032304.

    Article  Google Scholar 

  99. Yoshinaga N., Liverpool T. B. Hydrodynamic interactions in dense active suspensions: From polar order to dynamical clusters [J]. Physical Review E, 2017, 96(2): 020603.

    Article  Google Scholar 

  100. Theers M., Westphal E., Qi K. et al. Clustering of micro-swimmers: Interplay of shape and hydrodynamics [J]. Soft Matter, 2018, 14(42): 8590–8603.

    Article  Google Scholar 

  101. Zöttl A., Stark H. Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement [J]. Physical Review Letters, 2014, 112(11): 118101.

    Article  Google Scholar 

  102. Blaschke J., Maurer M., Menon K. et al. Phase separation and coexistence of hydrodynamically interacting micro-swimmers [J]. Soft Matter, 2016, 12(48): 9821–9831.

    Article  Google Scholar 

  103. Lin Z., Gao T. Direct-forcing fictitious domain method for simulating non-brownian active particles [J]. Physical Review E, 2019, 100(1): 013304.

    Article  Google Scholar 

  104. Jeffery G. B. The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of London [J]. Series A, Containing Papers of a Mathematical and Physical Character, 1922, 102(715): 161–179.

    Google Scholar 

  105. Lettinga M. P., Dogic Z., Wang H. et al. Flow behavior of colloidal rodlike viruses in the nematic phase [J]. Langmuir, 2005, 21(17): 8048–8057.

    Article  Google Scholar 

  106. Theers M., Westphal E., Gompper G. et al. Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit [J]. Soft Matter, 2016, 12(35): 7372–7385.

    Article  Google Scholar 

  107. Pöhnl R., Popescu M. N., Uspal W. E. Axisymmetric spheroidal squirmers and self-diffusiophoretic particles [J]. Journal of Physics: Condensed Matter, 2020, 32(16): 164001.

    Google Scholar 

  108. van Gogh B., Demir E., Palaniappan D. et al. The effect of particle geometry on squirming through a shear-thinning fluid [J]. Journal of Fluid Mechanics, 2022, 938: A3.

    Article  MathSciNet  Google Scholar 

  109. Liu C., Zhang P., Lin J. et al. Hydrodynamics of an elliptical squirmer [J]. Processes, 2022, 10(5): 805.

    Article  Google Scholar 

  110. Liu C., Ouyang Z., Lin J. Migration and rheotaxis of elliptical squirmers in a Poiseuille flow [J]. Physics of Fluids, 2022, 34(10): 103312.

    Article  Google Scholar 

  111. Zantop A. W., Stark H. Squirmer rods as elongated microswimmers: Flow fields and confinement [J]. Soft Matter, 2020, 16(27): 6400–6412.

    Article  Google Scholar 

  112. Ishikawa T. Stability of a dumbbell micro-swimmer [J]. Micromachines, 2019, 10(1): 33.

    Article  Google Scholar 

  113. Clopés J., Gompper G., Winkler R. G. Hydrodynamic interactions in squirmer dumbbells: Active stress-induced alignment and locomotion [J]. Soft Matter, 2020, 16(47): 10676–10687.

    Article  Google Scholar 

  114. Pandey A., Sunil Kumar P. B., Adhikari R. Flow-induced nonequilibrium self-assembly in suspensions of stiff, apolar, active filaments [J]. Soft Matter, 2016, 12(44): 9068–9076.

    Article  Google Scholar 

Download references

Acknowledgement

This research received other funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-zhong Lin.

Ethics declarations

Conflict of interest: The authors declare that they have no conflict of interest. Jian-zhong Lin is editorial board member for the Journal of Hydrodynamics and was not involved in the editorial review, or the decision to publish this article. All authors declare that there are no other competing interests.

Ethical approval: This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent: Not application.

Additional information

Project supported by the National Natural Science Foundation of China (Grant Nos. 12132015, 12302333).

Biography: Zhen-yu Ouyang (1990-), Male, Ph. D.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouyang, Zy., Lin, Jz. Recent progress in self-propelled particles. J Hydrodyn 36, 61–77 (2024). https://doi.org/10.1007/s42241-024-0007-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-024-0007-9

Key words

Navigation