Skip to main content
Log in

Three-dimensional oscillation of an acoustic microbubble between two rigid curved plates

  • Article
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Understanding the near boundary acoustic oscillation of microbubbles is critical for the effective design of ultrasonic biomedical devices and surface cleaning technologies. Accordingly, this study investigates the three-dimensional microbubble oscillation between two curved rigid plates experiencing a planar acoustic field using boundary integral method (BIM). The numerical model is validated via comparison with the nonlinear oscillation of the bubble governed by the modified Rayleigh-Plesset equation and with the axisymmetric model for an acoustic microbubble in infinite fluid domain. Then, the influence of the wave direction and horizontal standoff distance (h) on the bubble dynamics (including jet velocity, jet direction, centroid movement, total energy, and Kelvin impulse) were evaluated. It was concluded that the jet velocity, the maximum radius and the total energy of the bubble are not significantly influenced by the wave direction, while the jet direction and the high-pressure region depend strongly on it. More importantly, it was found that the jet velocity and the high-pressure region around the jet in acoustic bubble are drastically larger than their counterparts in the gas bubble.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franc J. P., Michel J. M. Fundamentals of cavitation [M]. Dordrecht, The Netherlands: Kluwer Academic Publishers, 2004.

    MATH  Google Scholar 

  2. Brett J. M., Yiannakopolous G. A study of explosive effects in close proximity to a submerged cylinder [J]. International Journal of Impact Engineering, 2008, 35(4): 206–225.

    Article  Google Scholar 

  3. Klaseboer E., Hung K., Wang C. et al. Experimental and numerical investigation of the dynamics of an underwater explosion bubble near a resilient/rigid structure [J]. Journal of Fluid Mechanics, 2005, 537: 387–413.

    Article  MATH  Google Scholar 

  4. Kerabchi N., Merouani S., Hamdaoui O. Depth effect on the inertial collapse of cavitation bubble under ultrasound: Special emphasis on the role of the wave attenuation [J]. Ultrasonics Sonochemistry, 2018, 48: 136–150.

    Article  Google Scholar 

  5. Wang S. P., Zhang A. M., Liu Y. L. et al. Bubble dynamics and its applications [J]. Journal of Hydrodynamics, 2018, 30(6): 975–991.

    Article  Google Scholar 

  6. Shan M. L., Zhu C. P., Zhou X. et al. Investigation of cavitation bubble collapse near rigid boundary by lattice Boltzmann method [J]. Journal of Hydrodynamics, 2016, 28(3): 442–450.

    Article  Google Scholar 

  7. Minsier V., Proost J. Shock wave emission upon spherical bubble collapse during cavitation-induced megasonic surface cleaning [J]. Ultrasonics Sonochemistry, 2008, 15: 598–604.

    Article  Google Scholar 

  8. Parizot L., Dutilleul H., Galvez M. E. et al. Physical and chemical characterization of shock-induced cavitation [J]. Ultrasonics Sonochemistry, 2020, 69: 105270.

    Article  Google Scholar 

  9. Bailey M. R., McAteer J. A., Pishchalnikov Y. A. et al. Progress in lithotripsy research [J]. Acoustics Today, 2006, 2(2): 18–29.

    Article  Google Scholar 

  10. Freund J. B., Colonius T., Evan A. P. A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy [J]. Ultrasound in Medicine and Biology, 2007, 33(9): 1495–1503.

    Article  Google Scholar 

  11. Johnsen E., Colonius T. Shock-induced collapse of a gas bubble in shockwave lithotripsy [J]. The Journal of the Acoustical Society of America, 2008, 124(4): 2011–2020.

    Article  Google Scholar 

  12. Maeda K., Colonius T., Kreider W. Modeling and experimental analysis of acoustic cavitation bubble clouds for burst-wave lithotripsy [J]. The Journal of the Acoustical Society of America, 2016, 140(4): 3307.

    Article  Google Scholar 

  13. Zhang Y. N., Xie X. Y., Zhang Y. X. High-speed experimental photography of collapsing cavitation bubble between a spherical particle and a rigid wall [J]. Journal of Hydrodynamics, 2018, 30(6): 1012–1021.

    Article  Google Scholar 

  14. Supponen O., Obreschkow D., Tinguely M. et al. Scaling laws for jets of single cavitation bubbles [J]. Journal of Fluid Mechanics, 2016, 802: 263–293.

    Article  Google Scholar 

  15. Cui J., Chen Z. P., Wang Q. et al. Experimental studies of bubble dynamics inside a corner [J]. Ultrasonics Sonochemistry, 2020, 64: 104951.

    Article  Google Scholar 

  16. Wang S. P., Wang Q., Zhang A. M. et al. Experimental observations of the behaviour of a bubble inside a circular rigid tube [J]. International Journal of Multiphase Flow, 2019, 121: 103096.

    Article  Google Scholar 

  17. Dadvand A., Khoo B. C., Shervani-Tabar M. T. A collapsing bubble-induced microinjector: an experimental study [J]. Experiments in Fluids, 2009, 46(3): 419–434.

    Article  Google Scholar 

  18. Dadvand A., Dawoodian M., Khoo B. C. et al. Spark-enerated bubble collapse near or inside a circular aperture and the ensuing vortex ring and droplet formation [J]. Acta Mechanica Sinica, 2013, 29(5): 657–666.

    Article  Google Scholar 

  19. Liu Y., Zhang A. M., Tian Z. et al. Investigation of free-field underwater explosion with Eulerian finite element method [J]. Ocean Engineering, 2018, 166: 182–190.

    Article  Google Scholar 

  20. Tian Z., Liu Y., Zhang A. M. et al. Analysis of breaking and re-closure of a bubble near a free surface based on the Eulerian finite element method [J]. Computers and Fluids, 2018, 170: 41–52.

    Article  MathSciNet  MATH  Google Scholar 

  21. Li T., Wang S., Li S. et al. Numerical investigation of an underwater explosion bubble based on FVM and VOF [J]. Applied Ocean Research, 2018, 74: 49–58.

    Article  Google Scholar 

  22. Qin Z., Alehossein H. Heat transfer during cavitation bubble collapse [J]. Applied Thermal Engineering, 2016, 105: 1067–1075.

    Article  Google Scholar 

  23. Koukouvinis P., Gavaises M., Supponen O. et al. Numerical simulation of a collapsing bubble subject to gravity [J]. Physics of Fluids, 2016, 28(3): 032110.

    Article  Google Scholar 

  24. Koch M., Lechner C., Reuter F. et al. Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using OpenFOAM [J]. Computers and Fluids, 2016, 126: 71–90.

    Article  MathSciNet  MATH  Google Scholar 

  25. Tang H., Liu Y. L., Cui P. et al., Numerical study on the bubble dynamics in a broken confined domain [J]. Journal of Hydrodynamics, 2020, 32(6): 1029–1042.

    Article  Google Scholar 

  26. Ma Y., Mohebbi R., Rashidi M. M. et al. Numerical study of MHD nanofluid natural convection in a baffled U-shaped enclosure [J]. International Journal of Heat and Mass Transfer, 2019, 130: 123–134.

    Article  Google Scholar 

  27. Bakhshan M., Wörner M., Dadvand A. Simulation of droplet impingement on a rigid square obstacle in a microchannel using multiphase lattice Boltzmann method [J]. Computational Particle Mechanics, 2021, 8: 973–991.

    Article  Google Scholar 

  28. Zhang Z., Wang C., Zhang A. M. et al. SPH-BEM simulation of underwater explosion and bubble dynamics near rigid wall [J]. Science China Technological Sciences, 2019, 62(7): 1082–1093.

    Article  Google Scholar 

  29. Zhang A. M., Liu Y. L. Improved three-dimensional bubble dynamics model based on boundary element method [J]. Journal of Computational Physics, 2015, 294: 208–223.

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang Q., Mahmud M., Cui J. et al. Numerical investigation of bubble dynamics at a corner [J]. Physics of Fluids, 2020, 32(5): 053306.

    Article  Google Scholar 

  31. Andrews E. D., Rivas D. F., Peters I. R. Cavity collapse near slot geometries [J]. Journal of Fluid Mechanics, 2020, 901: A29.

    Article  MathSciNet  MATH  Google Scholar 

  32. Li S., van der Meer D., Zhang A. M. et al. Modelling large scale airgun-bubble dynamics with highly non-spherical features [J]. International Journal of Multiphase Flow, 2020, 122: 103143.

    Article  MathSciNet  Google Scholar 

  33. Brujan E., Keen G., Vogel A. et al. The final stage of the collapse of a cavitation bubble close to a rigid boundary [J]. Physics of Fluids, 2002, 14(1): 85–92.

    Article  MATH  Google Scholar 

  34. Aziz I. A., Manmi K. M., Saeed R. K. et al. Modeling three dimensional gas bubble dynamics between two curved rigid plates using boundary integral method [J]. Engineering Analysis with Boundary Elements, 2019, 109: 19–31.

    Article  MathSciNet  MATH  Google Scholar 

  35. Pearson A., Blake J., Otto S. Jets in bubbles [J]. Journal of Engineering Mathematics, 2004, 48: 391–412.

    Article  MathSciNet  MATH  Google Scholar 

  36. Liu Y., Wang S., Zhang A. Interaction between bubble and air-backed plate with circular hole [J]. Physics of Fluids, 2016, 28: 062105.

    Article  Google Scholar 

  37. Aganin A., Guseva T., Kosolapova L. Impact of a cavitation bubble on a wall [J]. Russian Aeronautics, 2017, 60: 391–397.

    Article  Google Scholar 

  38. Calvisi M., Iloreta J., Szeri A. Dynamics of bubbles near a rigid surface subjected to a lithotripter shock wave. Part 2. Reflected shock intensifies non-spherical cavitation collapse [J]. Journal of Fluid Mechanics, 2008, 616: 63–97.

    Article  MATH  Google Scholar 

  39. Curtiss G., Leppinen D., Wang Q. et al. Ultrasonic cavitation near a tissue layer [J]. Journal of Fluid Mechanics, 2013, 730: 245–272.

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang Q., Manmi K. Three dimensional microbubble dynamics near a wall subject to high intensity ultrasound [J]. Physics of Fluids, 2014, 26(3): 032104.

    Article  MATH  Google Scholar 

  41. Wang Q., Manmi K., Calvisi M. L. Numerical modeling of the 3D dynamics of ultrasound contrast agent micro-bubbles using the boundary integral method [J]. Physics of Fluids, 2015, 27: 022104.

    Article  MATH  Google Scholar 

  42. Manmi K., Wang Q. Acoustic microbubble dynamics with viscous effects [J]. Ultrasonics Sonochemistry, 2017, 36: 427–436.

    Article  Google Scholar 

  43. Huang X., Hu H., Li S. et al. Nonlinear dynamics of a cavitation bubble pair near a rigid boundary in a standing ultrasonic wave field [J]. Ultrasonics Sonochemistry, 2020, 64: 104969.

    Article  Google Scholar 

  44. Brebbia C. A. The boundary element method for engineers [M]. London, UK: Pentech Press, 1980.

    Google Scholar 

  45. Duffy D. G. Green’s functions with applications [M]. Los Angeles, USA: CRC Press, 2015.

    Book  MATH  Google Scholar 

  46. Myint-U T., Debnath L. Linear partial differential equations for scientists and engineers [M]. New York, USA: Springer Science and Business Media, 2007.

    MATH  Google Scholar 

  47. Geankoplis C. J. Transport processes and separation process principles: (includes unit operations) [M]. New York, USA: Prentice Hall Press, 2003.

    Google Scholar 

  48. Li Z., Sun L., Zong Z. et al. Some dynamical characteristics of a non-spherical bubble in proximity to a free surface [J] Acta Mechanica, 2012, 223(11): 2331–2355.

    Article  MathSciNet  MATH  Google Scholar 

  49. Dong C. S., Wang G. Z. Curvatures estimation on triangular mesh [J]. Journal of Zhejiang University-Science A, Applied Physics and Engineering, 2005, 6: 128–136.

    MATH  Google Scholar 

  50. Wang Q. Local energy of a bubble system and its loss due to acoustic radiation [J]. Journal of Fluid Mechanics, 2016, 797: 201–230.

    Article  MathSciNet  MATH  Google Scholar 

  51. Calvisi M. L., Lindau O., Blake J. R. et al. Shape stability and violent collapse of microbubbles in acoustic traveling waves [J]. Physics of Fluids, 2007, 19(4): 047101.

    Article  MATH  Google Scholar 

  52. Blake J. R., Leppinen D. M., Wang Q. Cavitation and bubble dynamics: The Kelvin impulse and its applications [J]. Interface Focus, 2015, 5(5): 20150017.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdolrahman Dadvand.

Additional information

Biography

Kawa M. A. Manmi, Ph. D., Assistant Professor, E-mail: kawa.aziz@su.edu.krd

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manmi, K.M.A., Aziz, I.A., Arjunan, A. et al. Three-dimensional oscillation of an acoustic microbubble between two rigid curved plates. J Hydrodyn 33, 1019–1034 (2021). https://doi.org/10.1007/s42241-021-0090-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-021-0090-0

Key words

Navigation