Skip to main content
Log in

Numerical and experimental investigation of sloshing under large amplitude roll excitation

  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

To enable a virtual design and optimization process of partially filled coolant tanks a reliable numerical approach is needed to predict the liquid and gas two phase flow inside the tanks. In this study numerical results are validated by experimental data to examine the suitability of the method for the tank design process. The liquid motion inside the tanks can be described as sloshing with high amplitude, off-resonant roll excitation and was examined using a homogeneous multiphase model and VOF interface capturing approach as well as an experimental setup including piezoelectric pressure sensors and qualitative observation of the free surface. The effect of two vertical baffles on the maximum pressure and the position of phase interface was determined. The comparison between the computational and experimental results reveals that the numerical model tends to under predict the experimental peak pressures but resolves the liquid surface in close agreement with the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ibrahim R. A. Liquid sloshing dynamics: Theory and applications [M]. Cambridge, UK: Cambridge University Press, 2006.

    Google Scholar 

  2. Faltinsen O. M., Timokha A. Sloshing [M]. Cambridge, UK: Cambridge University Press, 2009.

    MATH  Google Scholar 

  3. Cho I. H., Choi J. S., Kim M. H. Sloshing reduction in a swaying rectangular tank by an horizontal porous baffle [J]. Ocean Engineering, 2017, 138: 23–34.

    Article  Google Scholar 

  4. Faltinsen O. M., Firoozkoohi R., Timokha A. N. Analytical modeling of liquid sloshing in a two-dimensional rectangular tank with a slat screen [J]. Journal of Engineering Mathematics, 2011, 70(1–3): 93–109.

    Article  MathSciNet  Google Scholar 

  5. Ning D. Z., Song W. H., Liu Y. L. et al. A boundary element investigation of liquid sloshing in coupled horizontal and vertical excitation [J]. Journal of Applied Mathematics, 2012, ID340640.

  6. Akyildiz H. A numerical study of the effects of the vertical baffle on liquid sloshing in two-dimensional rectangular tank [J]. Journal of Sound and Vibration, 2012, 331(1): 41–52.

    Article  Google Scholar 

  7. Yu Y. M., Ma N., Fan S. M. et al. Experimental and numerical studies on sloshing in a membrane-type LNG tank with two floating plates [J]. Ocean Engineering, 2017, 129: 217–227.

    Article  Google Scholar 

  8. Colagrossi A., Lugni C., Brocchini M. A study of violent sloshing wave impacts using an improved SPH method [J]. Journal of Hydraulic Research, 2010, 48(S1): 94–104.

    Article  Google Scholar 

  9. Zhang H., Sun B. Numerical simulation of sloshing in 2D rectangular tanks based on the prediction of free surface [J]. Mathematical Problems in Engineering, 2014, ID395107.

  10. Godderidge B., Turnock S., Tan M. et al. An investigation of multiphase CFD modelling of a lateral sloshing tank [J]. Computers and Fluids, 2009, 38(2): 183–193.

    Article  Google Scholar 

  11. Liu D., Tang W., Wang J. et al. Modelling of liquid sloshing using CLSVOF method and very large eddy simulation [J]. Ocean Engineering, 2017, 129: 160–176.

    Article  Google Scholar 

  12. Ming P. J., Duan W. Y. Numerical simulation of sloshing in rectangular tank with VOF based on unstructured grids [J]. Journal of Hydrodynamics, 2010, 22(6): 856–864.

    Article  Google Scholar 

  13. Eswaran M., Saha U. K., Maity D. Effect of baffles on a partially filled cubic tank: Numerical simulation and experimental validation [J]. Computers and Structures, 2009, 87(3–4): 198–205.

    Article  Google Scholar 

  14. Younes M. F., Younes Y. K. Experimental investigation for liquid sloshing in baffled rectangular tanks [J]. International Journal of Scientific and Technology Research, 2015, 4(12): 57–61.

    Google Scholar 

  15. Xue M. A., Zheng J. H., Lin P. Z. et al. Violent transient sloshing-wave interaction with a baffle in a three-dimensional numerical tank [J]. Journal of Ocean University of China, 2017, 16(4): 661–673.

    Article  Google Scholar 

  16. Liu D., Lin P. Three-dimensional liquid sloshing in a tank with baffles [J]. Ocean Engineering, 2009, 36(2): 202–212.

    Article  Google Scholar 

  17. Ji Y. M., Shin Y. S., Park J. S. et al. Experiments on non-resonant sloshing in a rectangular tank with large amplitude lateral oscillation [J]. Ocean Engineering, 2012, 50: 10–22.

    Article  Google Scholar 

  18. Raj R. T. K., Bageerathan T., Edison G. Design of fuel tank baffles to reduce kinetic energy produced by fuel sloshing and to enhance the product life cycle [J]. ARPN Journal of Engineering and Applied Sciences, 2014, 9(3): 244–249.

    Google Scholar 

  19. Park J. S., Choi S. C., Hong S. G. The prediction of fuel sloshing noise based on fluid-structure interaction analysis [J]. SAE International Journal of Passenger Cars-Mechanical Systems, 2011, 4(2): 1304–1310.

    Article  Google Scholar 

  20. Li F., Sibal S. D., McGann I. F. et al. Radiated fuel tank slosh noise simulation [C]. SAE 2011 World Congress and Exhibition, Detroit, USA, 2011.

  21. France W. N., Levadou M., Treakle T. W. et al. An investigation of head-sea parametric rolling and its influence on container lashing systems [C]. SNAME Annual Meeting 2001, Orlando, USA, 2001.

  22. Ryu M. C., Jung J. H., Kim Y. S. et al. Sloshing design load prediction of a membrane type LNG cargo containment system with two-row tank arrangement in offshore applications [J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8(6): 537–553.

    Article  Google Scholar 

  23. Loysel T., Chollet S., Gervaise E. et al. Results of the first sloshing model test benchmark [C]. International Offshore and Polar Engineering Conference, Rhodes, Greece, 2012.

  24. Loysel T., Gervaise E., Moreau S. et al. Results of the 2012–2013 sloshing model test benchmark [C]. International Offshore and Polar Engineering Conference, Anchorage, Alaska, USA, 2013.

  25. Kim D. H., Kim E. S., Shin S. C. et al. Sources of the measurement error of the impact pressure in sloshing experiments [J]. Journal of Marine Science and Engineering, 2019, 7(7): 207.

    Article  Google Scholar 

  26. Choi H. I., Choi Y. M., Kim H. Y. et al. A study on the characteristics of piezoelectric sensor in sloshing experiment [C]. Twentieth (2010) International Offshore and Polar Engineering Conference, Beijing, China, 2010.

  27. Pistani F., Thiagarajan K. Experimental measurements and data analysis of the impact pressures in a sloshing experiment [J]. Ocean Engineering, 2012, 52: 60–74.

    Article  Google Scholar 

  28. Rafiee A., Pistani F., Thiagarajan K. Study of liquid sloshing: Numerical and experimental approach [J]. Computational Mechanics, 2011, 47(1): 65–75.

    Article  MathSciNet  Google Scholar 

  29. Kim S. Y., Kim K. H., Kim Y. Comparative study on pressure sensors for sloshing experiment [J]. Ocean Engineering, 2015, 94: 199–212.

    Article  Google Scholar 

  30. Jung J. H., Yoon H. S., Lee C. Y. et al. Effect of the vertical baffle height on the liquid sloshing in a three-dimensional rectangular tank [J]. Ocean Engineering, 2012, 44: 79–89.

    Article  Google Scholar 

  31. Chen Y., Xue M. A. Numerical simulation of liquid sloshing with different filling levels using OpenFOAM and experimental validation [J]. Water, 2018, 10(12): 1752.

    Article  Google Scholar 

  32. Song Y. K., Chang K. A., Ryu Y. et al. Experimental study on flow kinematics and impact pressure in liquid sloshing [J]. Experiments in Fluids, 2013, 54(9): 1592.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronja Hoch.

Additional information

Biography: Ronja Hoch, Master

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoch, R., Wurm, FH. Numerical and experimental investigation of sloshing under large amplitude roll excitation. J Hydrodyn 33, 787–803 (2021). https://doi.org/10.1007/s42241-021-0074-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-021-0074-0

Key words

Navigation