Skip to main content
Log in

What have I discovered from ocean phenomena

  • Special Column on Celebrating Prof. Theodore Yao-Tsu Wu’s 95th Birthday (Guest Editor in Chief Hua Liu)
  • Published:
Journal of Hydrodynamics Aims and scope Submit manuscript

Abstract

Almost everything I have done in the last twenty years is based on what I have discovered from studying ocean phenomena. Specifically, the waves on the surface of the ocean and their dynamics. Two items stand out: The first one is from studying the evolution of the waves from ripples to fully developed giant ocean waves. To quantify the changes, I found that frequency is very different from what had been defined traditionally through Fourier analysis. Ture frequency should be determined by differentiation of the phase function defined by an adaptive method rather than by any form of integral transform. Therefore, it should have ever changing instantaneous values. The second discovery is from studying wave turbulence interactions. To reveal the detailed dynamics, I found that spectral representation should not be a single line on the frequency and energy plane. True spectrum should be a high dimensional manifold to cover all the possible dynamic interactions: additive and multiplicative ones. These discoveries have enabled me to develop a set of nonlinear and nonstationary data analysis tools to study many other phenomena, from turbulence to brain waves. They have led me to new wonders I have never even contemplated before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Phillips O. M. On the dynamics of unsteady gravity waves of finite amplitude, Part 1 [J]. Journal of Fluid Mechanics, 1960, 9: 193–217.

    Article  MathSciNet  Google Scholar 

  2. Huang N. E., Long S. R., Tung C. C. et al. A non Gaussian statistical model for surface elevation of nonlinear random wave fields [J]. Journal of Geophysical Research: Oceans, 1983, 88(C12): 7597–7606.

    Article  Google Scholar 

  3. Huang N. E., Long S. R., Bliven L. F. et al. The non Gaussian joint probability density function of slope and elevation for a nonlinear gravity wave field [J]. Journal of Geophysical Research: Oceans, 1984, 89(C2): 1961–1972.

    Article  Google Scholar 

  4. Hasselmann K. On the nonlinear energy transfer in gravity wave spectrum, Part 1 [J]. Journal of Fluid Mechanics, 1962, 12: 481–500.

    Article  MathSciNet  Google Scholar 

  5. Hasselmann K. On the nonlinear energy transfer in gravity wave spectrum, Part 2 [J]. Journal of Fluid Mechanics, 1963, 15: 273–281.

    Article  MathSciNet  Google Scholar 

  6. Hasselmann K. On the nonlinear energy transfer in gravity wave spectrum, Part 3 [J]. Journal of Fluid Mechanics, 1963, 15: 385–398.

    Article  MathSciNet  Google Scholar 

  7. Zakharov V. E. Stability of periodic waves of finite amplitude on the surface of a deep fluid [J]. Journal of Applied Mechanics and Technical Physics, 1968, 9(2): 190–194.

    Article  Google Scholar 

  8. Walsh E. J., Hancock D. W., Hines D. E. et al. An observation of the directional wave spectrum evolution from shoreline to fully developed [J]. Journal of Physical Oceanography, 1989, 19(5): 670–690.

    Article  Google Scholar 

  9. Huang N. E., Long S. R., Shen Z. The mechanism for frequency downshift in nonlinear wave evolution [J]. Advances in Applied Mechanics, 1996, 32: 59–117.

    Article  Google Scholar 

  10. Huang N. E., Shen Z., Long S. R. et al. The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis [J]. Philosophical Transactions of the Royal Society London Series A, 1998, 454(1971): 903–995.

    Article  Google Scholar 

  11. Huang N. E., Shen Z., Long R. S. A new view of nonlinear water waves: The hilbert spectrum [J]. Annual Review of Fluid Mechanics, 1999, 31: 417–457.

    Article  MathSciNet  Google Scholar 

  12. Lake B. M., Yuen H. C., Rungaldier H. et al. Non-linear deep-water waves: Theory and experiment. Part 2. Evolution of a continuous wave train [J]. Journal of Fluid Mechanics, 1977, 83: 49–74.

    Article  Google Scholar 

  13. Yuen H. C., Lake B. M. Nonlinear deep water waves: Theory and experiment [J]. Physics of Fluids, 1975, 18(8): 956–960.

    Article  Google Scholar 

  14. Ramamonjiarisoa A., Mollo-Christsen E. Modulation characteristics of sea surface waves [J]. Journal of Geophysical Research: Oceans, 1979, 84(C12): 7769–7775.

    Article  Google Scholar 

  15. Huang N. E., Wu Z., Long S. R. et al. On instantaneous frequency [J]. Advances in Adaptive Data Analysis, 2009, 1(2): 177–229.

    Article  MathSciNet  Google Scholar 

  16. Wu Z., Huang N. E. Ensemble empirical mode decomposition: A noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1–41.

    Article  Google Scholar 

  17. Deering R., Kaiser J. F. The use of a masking signal to improve empirical mode decomposition [C]. Proceedings. (ICASSP’05). IEEE International Conference on Acoustics, Speech, and Signal Processing, Philadelphia, Pennsylvania, USA, 2005.

  18. Yeh J. R., Shieh J. S., Huang N. E. The use of a masking signal to improve empirical mode decomposition [J]. Advances in Adaptive Data Analysis, 2010, 2(2): 135–156.

    Article  MathSciNet  Google Scholar 

  19. Rehman N., Mandic D. P. Multivariate empirical mode decomposition [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466(2117): 1291–1302.

    Article  MathSciNet  Google Scholar 

  20. Wu Z., Huang N. E., Chen X. The multi-dimensional ensemble empirical mode decomposition method [J]. Advances in Adaptive Data Analysis, 2009, 1(3): 339–372.

    Article  MathSciNet  Google Scholar 

  21. Huang N. E., Hu K., Yang A. C. C. et al. On Holo-Hilbert spectral analysis: A full-information spectral representation for nonlinear and nonstationary data [J]. Philosophical Transactions of the Royal Society London Series A, 2016, 374(2066): 20150206.

    Article  Google Scholar 

  22. Qiao F., Yuan Y., Deng J. et al. Wave-turbulence interaction-induced vertical mixing and its effects in ocean and climate models [J]. Philosophical Transactions of the Royal Society London Series A, 2016, 374(2065): 20150201.

    Article  Google Scholar 

  23. Lumley J. L., Terray E. A. Kinematics of turbulence convected by a random wave field [J]. Journal of Physical Oceanography, 1983, 13(11): 2000–3007.

    Article  Google Scholar 

  24. Phillips O. M. The scattering of gravity waves by turbulence [J]. Journal of Fluid Mechanics, 1958, 5: 177–192.

    Article  MathSciNet  Google Scholar 

  25. Phillips O. M. A note on the turbulence generated by gravity waves [J]. Journal of Geophysical Research: Oceans, 1961, 66(9): 2889–2893.

    Article  MathSciNet  Google Scholar 

  26. Teixeira M. A. C., Belcher S. E. On the distortion of turbulence by a progressive surface wave [J]. Journal of Fluid Mechanics, 2002, 458: 229–267.

    Article  MathSciNet  Google Scholar 

  27. Thais L., Magnaudet L. A triple decomposition of the fluctuating motion below laboratory wind water waves [J]. Journal of Geophysical Research: Oceans, 1995, 100(C1): 741–755.

    Article  Google Scholar 

  28. Thais L., Magnaudet J. Turbulent structure beneath surface gravity waves sheared by the wind [J]. Journal of Fluid Mechanics, 1996, 328: 313–344.

    Article  Google Scholar 

  29. Koch C. Consciousness: Confessions of a romantic reductionist [M]. Cambridge, MA, USA: MIT Press, 2012.

    Book  Google Scholar 

Download references

Acknowledgements

This work was possible under the support from Key Laboratory of Data Analysis and Applications (LDAA), and Pilot National Laboratory for Marine Science and Technology. I would like to dedicate this paper to Prof. Wu for his 95th birthday.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norden E. Huang.

Additional information

Biography: Norden E. Huang (1937-), Male, Professor

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, N.E. What have I discovered from ocean phenomena. J Hydrodyn 31, 1089–1098 (2019). https://doi.org/10.1007/s42241-019-0082-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42241-019-0082-5

Key words

Navigation