Skip to main content
Log in

A nucleobase cation symporter 2, EaXanP, from Erwinia amylovora transports xanthine

  • Original Article
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Erwinia amylovora causes fire blight, one of the more serious diseases for apple and pear cultivation. Previous studies generated E. amylovora mutants in purine metabolic pathway that still retain the ability to grow on host tissue and produce limited disease symptoms. Here we show that the E. amylovora genome has a locus that encodes for a xanthine permease belonging to the nucleobase cation symporter 2 (NCS2) family and the encoded protein displays a high level of amino acid sequence similarity to the Escherichia coli XanP. Our hypothesis is to investigate if the lack of a xanthine transporter has an effect upon disease progression. Heterologous expression of EaXanP in nucleobase transporter-deficient E. coli strains, coupled with radiolabeled nucleobase uptake studies determined that EaXanP is a high affinity xanthine transporter with a Km of 1.2 μM + 0.1 μM that confers sensitivity to growth on caffeine (1,3,7-trimethylxanthine). An E. amylovora ΔxanP::Camr mutant shows resistance to growth on caffeine, while over expression of EaXanP increases growth sensitivity to caffeine. While the EaXanP gene is expressed in infected immature pear fruitlets, an E. amylovora xanthine transport mutant is still able to grow and cause disease symptoms on immature pears and apple fruitlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alexander CR, Dingman DW, Schultes NP, Mourad GS (2018) The solute transport profile of two Aza-guanine transporters from the honey bee pathogen Paenibacillus larvae. FEMS Microbiol Letts. https://doi.org/10.1093/femsle/fny018

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 5:401–410

    Google Scholar 

  • Argyrou E, Sophianopoulou V, Schultes N, Diallinas G (2001) Functional characterization of a maize purine transporter by expression in Aspergillus nidulans. Plant Cell 13:953–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:1–11

    Article  Google Scholar 

  • Burrill TJ (1880) Anthrax of fruit trees: or the so-called fire blight of pear and twig blight of apple trees. Proc Am Assoc Adv Sci 2:583–597

    Google Scholar 

  • Burse A, Weingart H, Ullrich MS (2004) The phytoalexin-inducible multi-drug efflux pump, AcrAB, contributes to virulence in the fire blight pathogen, Erwinia amylovora. Mol Plant-Microbe Interact 17:43–54

    Article  CAS  PubMed  Google Scholar 

  • Cusa E, Obradors N, Baldoma L, Badia J, Aguilar J (1999) Genetic analysis of a chromosomal region containing genes required for assimilation of allantoin nitrogen and linked glyocylate metabolism in Escherichia coli. J Bacteriol 181:7479–7484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes for Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dereeper A, Guignon V, Blanc G et al (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:W465–W469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eastgate JA, Thompson L, Milner J, Cooper RM, Pollitt CE, Roberts IS (1997) Identification of a nonpathogenic Erwinia amylovora guaB mutant. Plant Path 46:594–599

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feistner G, Staub CM (1986) 6-Thioguanine from Erwinia amylovora. Curr Microbiol 13:95–101

    Article  CAS  Google Scholar 

  • Gaul J, Donegan K (2015) Caffeine and its effect on bacterial growth. The J Biol Sci 1:4–8

    Google Scholar 

  • Georgopoulou E, Mermelekas G, Karena E, Frillingos S (2010) Purine substrate recognition by the nucleobase-ascorbate transporter signature motif in the YgfO xanthine permease. J Biol Chem 25:19422–19433

    Article  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    Article  CAS  PubMed  Google Scholar 

  • Karatza P, Frillingos S (2005) Cloning and functional characterization of two bacterial members of the NAT/NCS2 family in Escherichia coli. Mol Membr Biol 22:251–261

    Article  CAS  PubMed  Google Scholar 

  • Karatza P, Panos P, Georgopoulou E, Frillingos S (2006) Cysteine-scanning analysis of the nucleobase ascorbate transporter signature motif in YgfO permease of Escherichia coli. J Biol Chem 281:39881–39890

    Article  CAS  PubMed  Google Scholar 

  • Karena E, Frillingos S (2009) Role of intramembrane polar residues in the YgfO xanthine permease. J Biol Chem 284:24257–24268

    Article  PubMed  PubMed Central  Google Scholar 

  • Karena E, Frillingos S (2011) The role of transmembrane segment TM3 in the xanthine permease XanQ of Escherichia coli. J Biol Chem 286:30595–39605

    Article  Google Scholar 

  • Klee SM, Mostafa I, Chen S, Dufresne C, Lehman BL, Sinn JP, Peter KA, McNellis TW (2018) An Erwinia amylovora yjeK mutant exhibits reduced virulence, increased chemical sensitivity and numerous environmentally dependent proteomic alterations. Mol Plant Path 19:1667–1678

    Article  CAS  Google Scholar 

  • Klee SM, Sinn JP, Finley M, Allman EL, Smith PB, Aimufua O, Sitther V, Lehman BL, Krawczyk T, Peter KA, McNellis TW (2019a) Erwinia amylovora auxotrophic mutant exometabolomics and virulence on apples. Appl Environ Microbiol. https://doi.org/10.1128/AEM.00935-19

  • Klee SM, Sinn JP, McNellis TW (2019b) The apple fruitlet model system for fire blight disease. In: Gassmann W (ed) Plant innate immunity, methods in molecular biology, Humana, vol 1991. New York, NY, pp 187–198

    Chapter  Google Scholar 

  • Kourkoulou A, Scazzochio C, Frillingos S, Mikros E, Byrne B, Diallinas G (2018) Nucleobase-ascorbate-transporter (NAT) family. In Roberts G, Watts A (eds) Encyclopedia of biophysics, springer, Berlin, Heidelberg https://doi.org/10.1007/978-3-642-35943-9_10090-1

  • Lu F, Li S, Jiang Y, Jiang J, Fan H, Lu G, Deng D, Dang S, Zhang X, Wang J, Jan N (2011) Structure and mechanism of the uracil transporter UraA. Nature 472:243–246

    Article  CAS  PubMed  Google Scholar 

  • Mermelekas G, Georgopoulou E, Kallis A, Botou M, Vlantos V, Frillingos S (2010) Cysteine-scanning analysis of helices TM8, TM9a and TM9b and intervening loops in the YgfO xanthine permease. J Biol Chem 285:35011–35020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niopek-Witz S, Deppe J, Lemieux MJ, Möhlmann T (2014) Biochemical characterization and structure-function relationship of two plant NCS2 proteins, the nucleotase transporters NAT3 and NAT12 from Arabidopsis thaliana. Biochem et Biophys Acta 1838:3025–3035

    Article  CAS  Google Scholar 

  • Papakostas K, Frillingos S (2012) Substrate selectivity of YgfU, a uric acid transporter from Escherichia coli. J Biol Chem 287:15684–15695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papakostas K, Georgopoulou E, Frillingos S (2008) Cysteine-scanning analysis of putative helix XII in the YgfO xanthine permease. J Biol Chem 283:13666–13678

  • Papakostas K, Botou M, Frillingos S (2013) Functional identification of the hypoxanthine/guanine transporters YjcD and YgfQ and the adenine transporters PurP and YicO of Escherichia coli K-12. J Biol Chem 288:36827–36840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patching SG (2018) Recent developments in nucleobase cation symporter-1 (NCS1) family transport proteins from bacteria, archaea, fungi and plants. J Biosci 43:797–815

    Article  CAS  PubMed  Google Scholar 

  • Piqué N, Miñana-Galbis D, Merino S, Tomás JM (2015) Virulence factors of Erwinia amylovora: a review. Int J Mol Sci 16:12836–12854

    Article  PubMed  PubMed Central  Google Scholar 

  • Pulawska J, Kalužna M, Warabieda W, Mikicinski A (2017) Comparative transcriptomic analysis of a lowly virulent strain of Erwinia amylovora in shoots of two apple cultivars – susceptible and resistant to fire blight. BMC Genomics. https://doi.org/10.1186/s12864-017-4251-z

  • Ramanaviciene A, Mostovojus V, Bachmatova I, Ramanaviciene A (2003) Anti-bacterial effects of caffeine on Escherichia coli and Pseudomonas fluorescens. Acta Medica Lituanica 10:185–188

    Google Scholar 

  • Ramos LS, Lehman BL, Peter KA, McNellis TW (2014) Mutation of the Erwinia amylovora argD gene causes arginine auxotrophy, nonpathogenicitgy in apples and reduced virulence in pears. Appl Environ Microbiol 80:6739–6749

    Article  PubMed  PubMed Central  Google Scholar 

  • Ramos LS, Sinn JP, Lehman BL, Pfeufer EE, Peter KA, McNellis TW (2015) Erwinia amylovora pyrC mutant causes fire blight despite pyrimidine auxotrophy. Lett Appl Microbiol 60:572–579

    Article  CAS  PubMed  Google Scholar 

  • Ritchie RJ, Prvan T (1996) Current statistical methods for estimating the km and Vmax of Michaelis-Menten kinetics. Biochem Ed 24:16–206

    Article  Google Scholar 

  • Stoffer-Bittner AJ, Alexander CR, Dingman DW, Mourad GS, Schultes NP (2018a) The solute transport and binding profile of a novel nucleobase cation symporter 2 from the honey bee pathogen Paenibacillus larvae. FEBS Openbio. https://doi.org/10.1002/2211-5463.12488

  • Stoffer-Bittner AJ, Alexander CR, Dingman DW, Mourad GS, Schultes NP (2018b) Functional characterization of the uracil transporter from honeybee pathogen Paenibacillus larvae. Microbial Path 124:305–310

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tusnady GE, Simon I (2001) The HMMTOP transmembrane topology prediction server. Bioinformatics 17:849–850

    Article  CAS  PubMed  Google Scholar 

  • Van der Zwet T, Orolaza-Halbrendt N, Zeller W (2012) Fire blight: history, biology, and management. American Phytopathological Society Press, St. Paul, MN

    Google Scholar 

  • Wang L, Beer SV (2006) Application of signature-tagged mutagenesis to the study of virulence of Erwinia amylovora. FEMS Microbiol Lett 265:164–171

    Article  CAS  PubMed  Google Scholar 

  • Wensing A, Gernold M, Jock S, Jansen R (2014) Identification and genetics of 6-thioguanine secreted by Erwinia species and its interference with the growth of other bacteria. Mol Gen Genomics 289:215–223

    Article  CAS  Google Scholar 

  • Yu X, Yang G, Yan C, Baylon JL, Jiang J, Fan H, Lu G, Hasegawa K, Okumura H, Wang T, Tajkhorshid E, Li S, Yan N (2017) Dimeric structure of the uracil:proton symporter UraA provides mechanistic insights into the SLC4/23/26 transporters. Cell Res 27:1020–1033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by research funds from Indiana University-Purdue University Fort Wayne to George Mourad and from the United States Department of Agriculture Hatch Fund CONH00652 to Neil Schultes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil P. Schultes.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Funk, A.M., Huntley, R.B., Mourad, G.S. et al. A nucleobase cation symporter 2, EaXanP, from Erwinia amylovora transports xanthine. J Plant Pathol 103 (Suppl 1), 89–98 (2021). https://doi.org/10.1007/s42161-020-00584-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-020-00584-5

Keywords

Navigation