Skip to main content
Log in

Potential host range and the effect of temperature on the pathogenicity of Phytophthora pseudocryptogea and its close relatives

  • Original Article
  • Published:
Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Phytophthora pseudocryptogea, a member of clade 8a of the Phytophthora phylogenetic tree, was formally described in 2015 as a close relative of P. cryptogea and P. erythroseptica. The potential host range of this newly described species and its close relatives was investigated in this study. Thirty species of herbaceous plants and nine species of woody plants were inoculated and monitored for development of foliar symptoms and root rots. Also, we inoculated the detached twigs of 21 tree species, fruit of six plant species, tubers of potato, and roots of carrot and sugar beet. Our results showed P. pseudocryptogea, P. cryptogea and P. erythroseptica had different potential host ranges, though all were pathogenic on some plant species such as pistachio, tomato, potato, eggplant, spinach and clover. Additionally, some plant species were able to discriminate P. pseudocryptogea from P. cryptogea including cucumber, melon, watermelon, alfalfa, soybean, cabbage, green pepper, and rice. These plants showed susceptibility to P. pseudocryptogea and resistance to P. cryptogea. Different species showed different virulence levels on detached tree twigs; however, almost all species caused severe rot on all tested fruits, tubers and roots. Investigation of the effects of root-zone temperature on the virulence of species showed that a temperature of 20 °C in increased root rot and root colonization in P. pseudocryptogea and P. erythroseptica, while P. cryptogea caused the most root rot and colonization at 25 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Banihashemi Z, Moradi M (2004) The frequency of isolation of Phytophthora spp. from crown and root of pistachio nut tree and reaction of the crown and root to the causal agents. Iran Plant Dis. 40:1–19

    Google Scholar 

  • Baradaran GR, Aminaee MM (2001) Fluctuations of plant pathogens in sugar factory's waste in Kerman province of Iran. Arch. Phytopathol. Plant Protec. 44:1666–1675

    Google Scholar 

  • Belisario A, Maccaroni M, Vettraino AM, Vannini A, Valier A (2004) Phytophthora species associated with decline and death of English walnut in Italy and France. In V International Walnut Symposium 705:401–407

    Google Scholar 

  • Bertier L, Leus L, D’hondt L, de Cock AW, Höfte M (2013) Host adaptation and speciation through hybridization and polyploidy in Phytophthora. Plos One 8:e85385

    PubMed  PubMed Central  Google Scholar 

  • Bhelwa PW (1962) Seed decay, seedling blight, and root rot of Cicer arietinum caused by Phytophthora cryptogea. Diss. Abstr. 23:389–390

    Google Scholar 

  • Blair JE, Coffey MD, Park SY, Geiser DM, Kang S (2008) A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet. Biol. 45:266–277

    CAS  PubMed  Google Scholar 

  • Bristow PR, Daubeny HA, Sjulin TM, Pepin HS, Nestby R, Windom GE (1988) Evaluation of Rubus germplasm for reaction to root rot caused by Phytophthora erythroseptica. J. Am. Soc. Hortic. Sci. 113:588–591

    Google Scholar 

  • Brown JG, Evans MM (1933) A Phytophthora rot of watermelon. Ariz. Agric. Exp. Stn. Tech. Bull. 51:45–65

    Google Scholar 

  • Burgess TI (2015) Molecular characterization of natural hybrids formed between five related indigenous Clade 6 Phytophthora species. Plos One 10:e0134225

    PubMed  PubMed Central  Google Scholar 

  • Bywater J, Hickman CJ (1959) A new variety of Phytophthora erythroseptica, which causes a soft rot of pea roots. Trans. Br. Mycol. Soc. 42:513–524

    Google Scholar 

  • Çakır E, Demirci F (2012) First Report of Phytophthora cryptogea on potato tubers in Turkey. Plant Dis. 96:1224–1224

    PubMed  Google Scholar 

  • Chitzanidis A, Kouyeas H (1970) Notes on Greek species of Phytophthora. II. Annales de l'Institut Phytopathologique Benaki 9:267–274

    Google Scholar 

  • Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet. Biol. 30:17–32

    CAS  PubMed  Google Scholar 

  • Erwin DC, Ribeiro OK (1996) Phytophthora Diseases Worldwide. American Phytopathological Society, St. Paul

    Google Scholar 

  • Érsek T, Man in’t Veld WA (2013) Phytophthora species hybrids: a novel threat to crops and natural ecosystems. In: Lamour K (ed), Phytophthora: A Global Perspective. CABI, pp. 37–47

  • Farr DF, Rossman AY (2017a) Phytophthora cryptogea. Fungal Databases, Systematic Botany and Mycology Laboratory, ARS, USDA. Online publication. Accessed 21 October 2017. http://nt.ars-grin.gov/fungaldatabases

  • Farr DF, Rossman AY (2017b) Phytophthora erythroseptica. Fungal Databases, Systematic Botany and Mycology Laboratory, ARS, USDA. Online publication. Accessed 21 October 2017. http://nt.ars-grin.gov/fungaldatabases

  • Fatemi J (1980) The role of Phytophthora species in almond decline in Iran. J. Phytopathol. 99:97–100

    Google Scholar 

  • Flowers RA, Erwin DC, Hendrix JW (1973) Isolation of Phytophthora cryptogea from bean in Kentucky. Plant Dis. Rep. 57:190–191

    Google Scholar 

  • Gillings MR, Letham DB (1989) Phytophthora erythroseptica causing wilting and stunting of tomato. Australas. Plant Pathol. 18:3–5

    Google Scholar 

  • Graham JH, Menge JA (2000) Phytophthora-induced diseases. St. APS Press, Paul

    Google Scholar 

  • Gunnell PS, Webster RK (1988) Crown and root rot of cultivated wild rice in California caused by Phytophthora erythroseptica sensu lato. Plant Dis. 72:909–910

    Google Scholar 

  • Hajebrahimi S, Banihashemi Z (2011) Host range of Phytophthora parsiana: a new high temperature pathogen of woody plants. Phytopath. Medit. 50:159–165

    Google Scholar 

  • Hall G (1989) Unusual or interesting records of plant pathogenic Oomycetes. Plant Pathol. 38:604–611

    Google Scholar 

  • Hawthorne BT (1988) Fungi causing storage rots on fruit of Cucurbita spp. N. Z. J. exp. Agric. 16:151–157

    Google Scholar 

  • Helena K (1978) New diseases caused by Phytophthora spp. Phytophthora Newsl. 6:72–73

    Google Scholar 

  • Hurtado-Gonzales OP, Aragon-Caballero LM, Flores-Torres JG, Man in’t Veld W, Lamour KH (2009) Molecular comparison of natural hybrids of Phytophthora nicotianae and P. cactorum infecting loquat trees in Peru and Taiwan. Mycologia 101:496–502

    CAS  PubMed  Google Scholar 

  • Husson C, Aguayo J, Revellin C, Frey P, Ioos R, Marçais B (2015) Evidence for homoploid speciation in Phytophthora alni supports taxonomic reclassification in this species complex. Fungal Genet. Biol. 77:12–21

    CAS  PubMed  Google Scholar 

  • Jamart G (1999) Phytophthora cryptogea as a cause of root rot of lettuce grown in a nutrient film technique system. Mededelingen - Faculteit Landbouwkundige en Toegepaste Biologische Wetenschappen, Universiteit Gent 64:623–626

    Google Scholar 

  • Jee HJ, Kim SYL, Lee SY, Cho WD (1996) Phytophthora cryptogea Causing the Foot Rot of Gerbera jamesom'i in Korea. Korean J. Plant Pathol. 12:374–376

    Google Scholar 

  • Jeffers S, Aldwinckle H (1984) Phytophthora species associated with nursery grown apple root stocks and trees. Phytopathology 74:845–846

    Google Scholar 

  • Johnson HW, Morgan FL (1965) Phytophthora root and crown rot of alfalfa in the Yazoo-Mississippi Delta. Plant Dis. Rep. 49:753–755

    Google Scholar 

  • Jones W (1954) Pink rot of potato tubers on Vancouver island. Can. J. Agric. Sci. 34:504–506

    Google Scholar 

  • Jung T, Jung MH, Cacciola SO, Cech T, Bakonyi J, Seress D, Mosca S, Schena L, Seddaiu S, Pane A, di San Lio GM (2017) Multiple new cryptic pathogenic Phytophthora species from Fagaceae forests in Austria. Italy and Portugal. IMA fungus. 8:219–255

    PubMed  Google Scholar 

  • Kaewruang W, Sivasithamparam K, Hardy GE (1988) Phytophthora cryptogea, an additional pathogen of gerbera in Western Australia. Australasian Plant Pathol. 17:67–68

    Google Scholar 

  • Karaoglanidis GS, Karadimos DA, Klonari K (2000) First report of Phytophthora Root Rot of sugar beet, caused by Phytophthora cryptogea, in Greece. Plant Dis. 84:593–593

    CAS  PubMed  Google Scholar 

  • Kenndedy R, Pegg GF (1990) Phytophthora cryptogea root rot of tomato in rockwool nutrient culture. II. Effects of root zone temperature on infections, sporulation and symptom development. Annu. Rev. Biol. 117:537–551

    Google Scholar 

  • Klisiewicz JM, Bread BH (1976) Disease of sunflower in California. Plant Dis. Rep. 60:298–301

    Google Scholar 

  • Koike ST, Martin FN (2010) First report of Phytophthora root rot caused by Phytophthora cryptogea on spinach in California. Plant Dis. 94:131–131

    CAS  PubMed  Google Scholar 

  • Kouyeas H, Chitzanidis A (1978) Host list of Phytophthora spp. identified in Greece. Phytophthora Newsl. 6:53–54

    Google Scholar 

  • Kroeber H (1981) Comparative studies of isolates different from the common type of Phytophthora cryptogea and of P. drechsleri. J. Phytopathol. 102:219–231

    Google Scholar 

  • Kroon LPNM, Bakker FT, Van Den Bosch GBM, Bonants PJM, Flier WG (2004) Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genet. Biol. 41:766–782

    CAS  PubMed  Google Scholar 

  • Kroon LP, Brouwer H, de Cock AW, Govers F (2012) The genus Phytophthora anno 2012. Phytopathology 102:348–364

    PubMed  Google Scholar 

  • Kurbetli İ (2014) Involvement of Phytophthora cryptogea in sweet cherry decline in Turkey. Phytoparasitica 42:627–630

    Google Scholar 

  • Larsson M, Gerhardson B (1990) Isolates of Phytophthora cryptogea pathogenic to wheat and some other crop plants. Phytopathology 129:303–315

    Google Scholar 

  • Latorre BA, Rioja ME, Wilcox WF (2001) Phytophthora species associated with crown and root rot of apple in Chile. Plant Dis. 85:603–606

    CAS  PubMed  Google Scholar 

  • Linde, A. R. 1991. Root rot of hydroponically grown lettuce caused by Phytophthora cryptogea. (Master’s thesis, University of Arizona, Arizona, USA.)

  • Mariette N, Androdias A, Mabon R, Corbiere R, Marquer B, Montarry J, Andrivon D (2016) Local adaptation to temperature in populations and clonal lineages of the Irish potato famine pathogen Phytophthora infestans. Ecol. Evol 6:6320–6331

    PubMed  PubMed Central  Google Scholar 

  • Man in’t Veld WA, de Cock AW, Summerbell RC (2007) Natural hybrids of resident and introduced Phytophthora species proliferating on multiple new hosts. Eur. J. Plant Pathol. 117:25–33

    Google Scholar 

  • Man in’t Veld WA, Rosendahl KCHM, Hong C (2012) Phytophthora×serendipita sp. nov. and P. ×pelgrandis, two destructive pathogens generated by natural hybridization. Mycologia 104:1390–1396

    Google Scholar 

  • Martin FN, Blair JE, Coffey MD (2014) A combined mitochondrial and nuclear multilocus phylogeny of the genus Phytophthora. Fungal Genet. Bio. 66:19–32

    CAS  Google Scholar 

  • Matheron ME, Matejka JC (1992) Effects of temperature on sporulation growth of Phytophthora citrophthora and P. parasitica and development of foot rot on citrus. Plant Dis. 76:1103–1109

    Google Scholar 

  • Matsumoto N, Sato T (1979) Phytophthora cryptogea Pethyb. & Laff. found in alfalfa-field soil. Ann. Phyopath. Soc. Japan. 45:362–368

    Google Scholar 

  • Middleton JT, Tucker CM, Tompkins CM (1944) A disease of gloxinia caused by Phytophthora cryptogea. J. Agric. Res. 68:405–413

    Google Scholar 

  • Mills SD, Förster H, Coffey MD (1991) Taxonomic structure of Phytophthora cryptogea and P. drechsleri based on isozyme and mitochondrial DNA analyses. Mycol. Res. 95:31–48

    CAS  Google Scholar 

  • Minerdi D, Moretti MLY, Gaggero L, Garibaldi A, Gullino ML (2008) Conventional PCR and real time quantitative PCR detection of Phytophthora cryptogea on Gerbera jamesonii. Eur. J. Plant Pathol. 122:227–237

    CAS  Google Scholar 

  • Mirabolfathy, M., Cooke, D. E., Duncan, J. M., Williams, N. A., Ershad, D. and Alizadeh, A. 2001. Phytophthora pistaciae sp. nov. and P. melonis: the principal causes of pistachio gummosis in Iran. Mycol. Res.105:1166-1175.

  • Mircetich SM, Matheron ME (1983) Phytophthora root and crown rot of walnut trees. Phytopathology 73:1481–1488

    Google Scholar 

  • Morgan FL, Johnson HW (1965) Phytophthora root and crown rot of Vetch. Plant Dis. Rep. 49:84–88

    Google Scholar 

  • Mostowfizadeh-Ghalamfarsa R, Mirsoleimani Z (2013) Species-specific identification and detection of Phytophthora pistaciae the causal agent of pistachio gummosis based on coding and non-coding loci. Phytopath. Medit. 52:30–45

    CAS  Google Scholar 

  • Mostowfizadeh-Ghalamfarsa R, Banihashemi Z (2015) Species-specific PCR identification and detection of Phytophthora drechsleri, P. cryptogea and P. erythroseptica. Iran J. Plant Path 51:541–553

    Google Scholar 

  • Mostowfizadeh-Ghalamfarsa R, Cooke DEL, Banihashemi Z (2008) Phytophthora parsiana sp. nov., a new high-temperature tolerant species. Mycol. Res. 112:783–794

    CAS  PubMed  Google Scholar 

  • Mostowfizadeh-Ghalamfarsa R, Panabieres F, Banihashemi Z, Cooke DEL (2010) Phylogenetic relationship of Phytophthora cryptogea Pethybr. & Laff and P. drechsleri Tucker. Fungal Biolo. 114:325–339

    CAS  Google Scholar 

  • Nagel JH, Gryzenhout M, Slippers B, Wingfield MJ, Hardy GSJ, Stukely MJ, Burgess TI (2013) Characterization of Phytophthora hybrids from ITS clade 6 associated with riparian ecosystems in South Africa and Australia. Fung. Biol. 117:329–347

    Google Scholar 

  • Nakova M (2010) Phytophthora root and crown rot on apples in Bulgaria. Pestic. Fitomed. 25:43–50

    CAS  Google Scholar 

  • Nasrollah-Nezhad, S., Alizadeh, A. and Banihashemi, Z. 1998. Identification of cucurbit damping off in Khozestan province. Proceedings of the 13th Iran Plant Protection Congress. (p.179). Karaj.

  • Nirenberg HI, Gerlach WF, Gräfenhan T (2009) Phytophthora ×pelgrandis, a new natural hybrid pathogenic to Pelargonium grandiflorum hort. Mycologia 101:220–231

    CAS  PubMed  Google Scholar 

  • Oh E, Gryzenhout M, Wingfield BD, Wingfield MJ, Burgess TI (2013) Surveys of soil and water reveal a goldmine of Phytophthora diversity in South African natural ecosystems. IMA Fungus. 4:123–131

    PubMed  PubMed Central  Google Scholar 

  • Olson HA, Benson DM (2011) Characterization of Phytophthora spp. on floriculture crops in North Carolina. Plant Dis. 95:1013–1020

    CAS  PubMed  Google Scholar 

  • Olson HA, Benson DM (2013) Host specificity and variations in aggressiveness of North Carolina isolates of Phytophthora cryptogea and P. drechsleri in greenhouse ornamental plants. Plant Dis. 97:74–80

    CAS  PubMed  Google Scholar 

  • Pethybridge GH (1913) On the rotting of potato tubers by a new species of Phytophthora hit herto undescribed. Sci. Proc. R. Dublin Soc. 13:529–565

    Google Scholar 

  • Pethybridge GH, Lafferty HA (1919) A disease of tomato and other plants caused by a new species of Phytophthora. Sci. Proc. R. Dublin Soc. 15:487–505

    Google Scholar 

  • Pratt RG (1981) Morphology, pathogenicity, and host range of Phytophthora megasperma, P. erythroseptica, and P. parasitica from arrowleaf clover. Phytopathology 71:276–282

    Google Scholar 

  • Rattink H (1981) Characteristics and pathogenicity of six Phytophthora isolates from pot plants. Neth. J. Plant Pathol. 87:83–90

    Google Scholar 

  • Ribeiro OK (1978) A source book of the genus Phytophthora. Vaduz, Liechtenstein: J. Cramer.

  • Rowe RC, Schmitthenner AF (1977) Potato pink rot in Ohio caused by Phytophthora erythroseptica and P. cryptogea. Plant Dis. Rep. 61:807–810

    Google Scholar 

  • Sadowska-Rybak M, Ecks H and Schickedanz F (1996) Detection of Phytophthora cryptogea Pethybr. et Laff. in Gerbera by serological methods/Nachweis von Phytophthora cryptogea Pethybr. et Laff. an Gerbera mit serologischen Methoden. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz/Journal of Plant Diseases and Protection, pp.8-14

  • Safaiefarahani B, Mostowfizadeh-Ghalamfarsa R, Cooke DEL (2013) Characterisation of Phytophthora inundata isolates according to host range, morphological variation and multigene molecular phylogeny. Phytopath. Medit 52:47–66

    Google Scholar 

  • Safaiefarahani B, Mostowfizadeh-Ghalamfarsa R, Hardy GSJ, Burgess TI (2015) Re-evaluation of the Phytophthora cryptogea species complex and the description of a new species, Phytophthora pseudocryptogea sp. nov. Mycol. Prog 14:1–12

    Google Scholar 

  • Safaiefarahani B, Mostowfizadeh-Ghalamfarsa R, Hardy GSJ, Burgess TI (2016) Species from within the Phytophthora cryptogea complex and related species, P. erythroseptica and P. sansomeana, readily hybridize. Fungal Biolo. 120:975–987

    CAS  Google Scholar 

  • Salas B, Stack RW, Secor GA, Gudmestad NC (2000) The effect of wounding, temperature, and inoculum on the development of pink rot of potatoes caused by Phytophthora erythroseptica. Plant Dis. 84:1327–1333

    CAS  PubMed  Google Scholar 

  • Salmaninezhad F, Mostowfizadeh-Ghalamfarsa R (2016) Phytophthora pseudocryptogea the causal agent of rice damping off. Proceedings of the 22nd Iranian Plant Protection Congress. (p. 149). Karaj, Iran.

  • Satour MM, El Shinnawy SA (1973) A new root and crown rot of cucurbits caused by Phytophthora cryptogea. Egypt. J. Phytopathol. 69:1–8

    Google Scholar 

  • Seidl Johnson AC, Frost KE, Rouse DI, Gevens AJ (2015) Effect of temperature on growth and sporulation of US-22, US-23, and US-24 clonal lineages of Phytophthora infestans and implications for late blight epidemiology. Phytopathology 105:449–459

    PubMed  Google Scholar 

  • Shaw DS (1988) The Phytophthora species. In: Sidhu GS (ed) Advances in Plant Pathology, Vol. 6: Genetics of Plant Pathogenic Fungi. Academic Press, London, pp 27–51

    Google Scholar 

  • Stamps DJ (1978) Phytophthora erythroseptica. CMI Descriptions of Pathogenic Fungi and Bacteria No. 593

  • Stirling AM, Irwin JAG (1986) Etiology of a newly described root rot of guar (Cyamopsis tetragonoloba) in Australia caused by Phytophthora cryptogea. Plant Pathol. 35:527–534

    Google Scholar 

  • Tompkins CM, Tucker CM (1937) Foot rot of China-aster, annual stock, and Transval daisy caused by Phytophthora cryptogea. J. Agric. Res. 55:563–573

    Google Scholar 

  • Tompkins CM, Tucker CM (1950) Rhizome rot of white calla caused by Phytophthora erythroseptica. Phytopathology 40:712–714

    Google Scholar 

  • Tompkins CM, Tucker CM (1947) Leaf blight of pink calla caused by Phytophthora erythroseptica. Phytopathology. 37(6)

  • Trapero-Casas A, Rodriguez-Tello A, Kaiser WJ (2000) Lupins, a new host of Phytophthora erythroseptica. Plant Dis. 84:488–488

    CAS  PubMed  Google Scholar 

  • Vettraino AM, Flamini L, Pizzichini L, Prodi A, Nipoti P, Vannini A, Lagnese R (2008) First report of root and collar rot by Phytophthora cryptogea on sweet cherry in Italy. Plant Dis. 92:177–177

    CAS  PubMed  Google Scholar 

  • Vettraino AM, Belisario A, Maccaroni M, Vannini A (2003) Evaluation of root damage to English walnut caused by five Phytophthora species. Plant Pathol. 52:491–495

    Google Scholar 

  • Vettraino AM, Belisario A, Maccaroni M, Anselmi N, Vannini A (2002) First report of Phytophthora cryptogea in walnut stands in Italy. Plant Dis. 86:328–328

    CAS  PubMed  Google Scholar 

  • Whelan J, Loughnane JB (1969) Non-solanaceous hosts of Phytophthora erythroseptica. Roy. Dublin. Soc. Sci. Proc. Ser. B. 2:171–177

    Google Scholar 

  • Wicks TJ, Lee TC, Scott ES (1997) Phytophthora crown rot of almonds in Australia. EPPO Bulletin. 27:501–506

    Google Scholar 

  • Wilcox WF, Mircetich SM (1985) Pathogenicity and relative virulence of seven Phytophthora spp. on Mahaleb and Mazzard cherry. Phytopatholgy 75:221–226

    Google Scholar 

  • Zentmyer GA (1981) The effect of temperature on growth and pathogenesis of Phytophthora cinnamomi and on growth of its avocado host. Phytopathology 71:925–928

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor G.E.St.J. Hardy and Professor T.I. Burgess (Centre for Phytophthora Science and Management, School of Biological Sciences and Biotechnology, Murdoch University, Murdoch, Australia), Dr. D.E.L. Cooke (The James Hutton Institute, Invergowrie Dundee DD2 5DA Scotland UK) and Dr. R. Taylor (Department of Plant Pathology, North Dakota State University, Fargo, USA) for providing some of Phytophthora spp. cultures used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mostowfizadeh-Ghalamfarsa.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delshad, D., Mostowfizadeh-Ghalamfarsa, R. & Safaiefarahani, B. Potential host range and the effect of temperature on the pathogenicity of Phytophthora pseudocryptogea and its close relatives. J Plant Pathol 102, 753–763 (2020). https://doi.org/10.1007/s42161-020-00501-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42161-020-00501-w

Keywords

Navigation