Skip to main content
Log in

Multi-catalytic active site biochar-based catalysts for glucose isomerized to fructose: Experiments and density functional theory study

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

This work provides an innovative method for preparing different isomerization catalysts by impregnating different proportions of MgCl2 and AlCl3 and combining different K compounds on cellulose-derived biochar, followed by pyrolysis. Results show MgO and Al(OH)3 existing in 4Mg-1Al-C catalyst can obtain better catalytic effect on glucose isomerization than the singe of Al presenting in 0Mg-1Al-C catalyst. Moreover, the synergism effects of the multi-catalytic active sites such as β-, γ-Al(OH)3, KCl, MgO, and K4H2(CO3)3 in Mg-Al-KHCO3-C catalyst can further lead to an increase in glucose isomerization, compared to the 4Mg-1Al-C catalyst. The X-ray diffraction results present that the value of O/Al in Mg-Al-KHCO3-C catalyst is as high as 13.38, which provides many unsaturated acidic catalysis sites and benefits the glucose isomerization. Simultaneously, the TPD results reveal that the main active sites (MgO, Al(OH)3, and K4H2(CO3)3) in Mg-Al-KHCO3-C catalyst can provide weakly acidic and basic sites and avoid strongly acidic and basic sites to excessively attack the glucose. Based on the DFT analysis, the results indicate that the MgO has a great effect on the ring-opening reaction to form acyclic glucose, while Al(OH)3+ has a great effect on promoting acyclic glucose hydrogen transfer isomerized to form fructose. Compared to other carbon-based metal catalysts, the prepared Mg-Al-KHCO3-C has excellent catalytic performance, which gives a higher fructose yield (38.7%) and selectivity (87.72%) and glucose conversion (44.12%) at 100 °C in 30 min. In this study, we develop a highly efficient Mg-Al-K-biochar catalyst for glucose isomerization and provide an efficient method for cellulose valorization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Kang X, Wang YY, Wang S, Song X (2021) Xylan and xylose decomposition during hot water pre-extraction: a pH-regulated hydrolysis. Carbohydr Polym 255:117391. https://doi.org/10.1016/j.carbpol.2020.117391

    Article  CAS  PubMed  Google Scholar 

  2. Liu B, Liu L, Deng B, Huang C, Zhu J, Liang L, He X, Wei Y, Qin C, Liang C, Liu S, Yao S (2022) Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: a review. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2022.09.270

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dai L, Lu J, Kong F, Liu K, Wei H, Si C (2019) Reversible photo-controlled release of bovine serum albumin by azobenzene-containing cellulose nanofibrils-based hydrogel. Adv Compos Hybrid Ma 2(3):462–470. https://doi.org/10.1007/s42114-019-00112-9

    Article  CAS  Google Scholar 

  4. Hahn-Hägerdal B, Galbe M, Gorwa-Grauslund MF, Lidén G, Zacchi G (2006) Bio-ethanol – the fuel of tomorrow from the residues of today. Trends Biotechnol 24(12):549–556. https://doi.org/10.1016/j.tibtech.2006.10.004

    Article  CAS  PubMed  Google Scholar 

  5. Yang X, Yu IKM, Cho D-W, Chen SS, Tsang DCW, Shang J, Yip ACK, Wang L, Ok YS (2019) Tin-functionalized wood biochar as a sustainable solid catalyst for glucose isomerization in biorefinery. ACS Sustain Chem Eng 7(5):4851–4860. https://doi.org/10.1021/acssuschemeng.8b05311

    Article  CAS  Google Scholar 

  6. Saravanamurugan S, Paniagua M, Melero JA, Riisager A (2013) Efficient isomerization of glucose to fructose over zeolites in consecutive reactions in alcohol and aqueous media. J Am Chem Soc 135(14):5246–5249. https://doi.org/10.1021/ja400097f

    Article  CAS  PubMed  Google Scholar 

  7. Eqi M, Shi C, Xie J, Kang F, Qi H, Tan X, Huang Z, Liu J, Guo J (2022) Synergetic effect of Ni-Au bimetal nanoparticles on urchin-like TiO2 for hydrogen and arabinose co-production by glucose photoreforming. Adv Compos Hybrid Ma 6(1):5. https://doi.org/10.1007/s42114-022-00580-6

    Article  CAS  Google Scholar 

  8. Zhao S, Yue G, Liu X, Qin S, Wang B, Zhao P, Ragauskas AJ, Wu M, Song X (2023) Lignin-based carbon quantum dots with high fluorescence performance prepared by supercritical catalysis and solvothermal treatment for tumor-targeted labeling. Adv Compos Hybrid Mater 6(2):73. https://doi.org/10.1007/s42114-023-00645-0

    Article  CAS  Google Scholar 

  9. Liu X, Zhao S, Chen X, Han X, Zhang J, Wu M, Song X, Zhang Z (2024) The effect of lignin molecular weight on the formation and properties of carbon quantum dots. Green Chem. https://doi.org/10.1039/d3gc04694j

    Article  Google Scholar 

  10. Li H, Yang S, Saravanamurugan S, Riisager A (2017) Glucose isomerization by enzymes and chemo-catalysts: status and current advances. ACS Catal 7(4):3010–3029. https://doi.org/10.1021/acscatal.6b03625

    Article  CAS  Google Scholar 

  11. Xiong X, Yu IKM, Tsang DCW, Chen L, Su Z, Hu C, Luo G, Zhang S, Ok YS, Clark JH (2020) Study of glucose isomerisation to fructose over three heterogeneous carbon-based aluminium-impregnated catalysts. J Clean Prod 268:122378. https://doi.org/10.1016/j.jclepro.2020.122378

    Article  CAS  Google Scholar 

  12. Yu IKM, Hanif A, Tsang DCW, Shang J, Su Z, Song H, Ok YS, Poon CS (2020) Tuneable functionalities in layered double hydroxide catalysts for thermochemical conversion of biomass-derived glucose to fructose. Chem Eng J 383:122914. https://doi.org/10.1016/j.cej.2019.122914

    Article  CAS  Google Scholar 

  13. Peng J, Kang X, Zhao S, Yin Y, Zhao P, Ragauskas AJ, Si C, Song X (2023) Regulating the properties of activated carbon for supercapacitors: impact of particle size and degree of aromatization of hydrochar. Adv Compos Hybrid Mater 6(3):107. https://doi.org/10.1007/s42114-023-00682-9

    Article  CAS  Google Scholar 

  14. Kang X, Peng J, Ragauskas AJ, Ren X, Si C, Wang S, Song X (2022) Competitive effects of glucan’s main hydrolysates on biochar formation: a combined experiment and density functional theory analysis. Bioresour Technol 359:127427. https://doi.org/10.1016/j.biortech.2022.127427

    Article  CAS  PubMed  Google Scholar 

  15. Peng J, Kang X, Zhao S, Zhao P, Ragauskas AJ, Si C, Xu T, Song X (2023) Growth mechanism of glucose-based hydrochar under the effects of acid and temperature regulation. J Colloid Interface Sci 630(Pt A):654–665. https://doi.org/10.1016/j.jcis.2022.10.044

    Article  CAS  PubMed  Google Scholar 

  16. Deng Y, Zhang T, Clark J, Aminabhavi T, Kruse A, Tsang DCW, Sharma BK, Zhang F, Ren H (2020) Mechanisms and modelling of phosphorus solid–liquid transformation during the hydrothermal processing of swine manure. Green Chem 22(17):5628–5638. https://doi.org/10.1039/d0gc01281e

    Article  CAS  Google Scholar 

  17. Kim M, Jee S-C, Sung J-S, Kadam AA (2020) Supermagnetic sugarcane bagasse hydrochar for enhanced osteoconduction in human adipose tissue-derived mesenchymal stem cells. Nanomaterials 10(9):1793. https://doi.org/10.3390/nano10091793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang S, Sheng K, Liang Y, Liu J, S. E, X. Zhang, (2020) Green synthesis of aluminum-hydrochar for the selective isomerization of glucose to fructose. Sci Total Environ 727:138743. https://doi.org/10.1016/j.scitotenv.2020.138743

    Article  CAS  PubMed  Google Scholar 

  19. Yu IKM, Xiong X, Tsang DCW, Wang L, Hunt AJ, Song H, Shang J, Ok YS, Poon CS (2019) Aluminium-biochar composites as sustainable heterogeneous catalysts for glucose isomerisation in a biorefinery. Green Chem 21(6):1267–1281. https://doi.org/10.1039/c8gc02466a

    Article  CAS  Google Scholar 

  20. Kuichuan Sheng SZ, Liu J, Shuang E, Jin C, Zenghua Xu, Zhang X (2019) Hydrothermal carbonization of cellulose and xylan into hydrochars and application on glucose isomerization. J Clean Prod 237:117831. https://doi.org/10.1016/j.jclepro.2019.117831

    Article  CAS  Google Scholar 

  21. Li B, Guo M, Chen X, Miao Y (2022) Hydrothermally synthesized N and S co-doped mesoporous carbon microspheres from poplar powder for supercapacitors with enhanced performance. Adv Compos Hybrid Ma 5(3):2306–2316. https://doi.org/10.1007/s42114-021-00409-8

    Article  CAS  Google Scholar 

  22. Xu T, Wang Y, Liu K, Zhao Q, Liang Q, Zhang M, Si C (2023) Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor. Adv Compos Hybrid Mater 6(3):108. https://doi.org/10.1007/s42114-023-00675-8

    Article  CAS  Google Scholar 

  23. Fu Q, Yang S, Ning P, Miao R, He L, Guan Q (2021) Construction of dot-matrix Cu0-Cu1Ni3 alloy nano-dispersions on the surface of porous N-autodoped biochar for selective hydrogenation of furfural. ChemCatChem 13(19):4164–4181. https://doi.org/10.1002/cctc.202100882

    Article  CAS  Google Scholar 

  24. Liu J, Yang M, Gong C, Zhang S, Sheng K, Zhang X (2021) Insights into the glucose isomerization mechanism of Al-hydrochar catalyst probed by Al-oxide species transformation. J Environ Chem Eng 9(6):106721. https://doi.org/10.1016/j.jece.2021.106721

    Article  CAS  Google Scholar 

  25. Liu J, Zhang X, Yang L, Danhassan UA, Zhang S, Yang M, Sheng K, Zhang X (2021) Glucose isomerization catalyzed by swollen cellulose derived aluminum-hydrochar. Sci Total Environ 777:146037. https://doi.org/10.1016/j.scitotenv.2021.146037

    Article  CAS  PubMed  Google Scholar 

  26. de Bruijn JM, Kieboom APG, van Bekkum H (2010) Alkaline degradation of monosaccharides III. Influence of reaction parameters upon the final product composition. Recl Trav Chim Pays-Bas 105(6):176–183. https://doi.org/10.1002/recl.19861050603

    Article  Google Scholar 

  27. De Wit APGKG, Bekkum HV (1979) Enolisation and isomerisation of monosaccharides in queous, alkaline solution. Carbohydr Res 74:157–175. https://doi.org/10.1016/s0008-6215(00)84773-4

    Article  Google Scholar 

  28. Gong C, Bryant N, Meng X, Bhagia S, Pu Y, Xin D, Bender Koch C, Felby C, Thygesen LG, Ragauskas A, Thomsen ST (2021) Double bonus: surfactant-assisted biomass pelleting benefits both the pelleting process and subsequent enzymatic saccharification of the pretreated pellets. Green Chem 23(2):1050–1061. https://doi.org/10.1039/d0gc03855e

    Article  CAS  Google Scholar 

  29. Xie W, Yao F, Gu H, Du A, Lei Q, Naik N, Guo Z (2022) Magnetoresistive and piezoresistive polyaniline nanoarrays in-situ polymerized surrounding magnetic graphene aerogel. Adv Compos Hybrid Ma 5(2):1003–1016. https://doi.org/10.1007/s42114-021-00413-y

    Article  CAS  Google Scholar 

  30. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: The PBE0 model. J Chem Phys 110(13):6158–6170. https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  31. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and 12 other functionals. Theor Chem Acc 119(5–6):525–525. https://doi.org/10.1007/s00214-007-0401-8

    Article  CAS  Google Scholar 

  32. Schäfer A, Huber C, Ahlrichs R (1994) Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys 100(8):5829–5835. https://doi.org/10.1063/1.467146

    Article  Google Scholar 

  33. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113(18):6378–6396. https://doi.org/10.1021/jp810292n

    Article  CAS  PubMed  Google Scholar 

  34. Kang X, You Z, Peng J, Ragauskas AJ, Pang J, Zhao P, Yin Y, Song X (2023) Synthesis of Mg-K-biochar bimetallic catalyst and its evaluation of glucose isomerization. Biochar 5(1):56. https://doi.org/10.1007/s42773-023-00250-w

    Article  CAS  Google Scholar 

  35. Wang S, Guo D, Kang R, Feng J, Pan H (2023) Fabrication of lignin-derived mesoporous carbon/magnesium oxide composites for microwave-assisted isomerization of glucose in water. Int J Biol Macromol 232:123341. https://doi.org/10.1016/j.ijbiomac.2023.123341

    Article  CAS  PubMed  Google Scholar 

  36. Chai X, He H, Fan H, Kang X, Song X (2019) A hydrothermal-carbonization process for simultaneously production of sugars, graphene quantum dots, and porous carbon from sugarcane bagasse. Bioresour Technol 282:142–147. https://doi.org/10.1016/j.biortech.2019.02.126

    Article  CAS  PubMed  Google Scholar 

  37. Yu S, Kim E, Park S, Song IK, Jung JC (2012) Isomerization of glucose into fructose over Mg-Al hydrotalcite catalysts. Catal Commun 29:63–67. https://doi.org/10.1016/j.catcom.2012.09.015

    Article  CAS  Google Scholar 

  38. Zhang S, Wang J, Zhu S, Liu X, Xiong Y, Zhang H (2020) Effects of MgCl2 and Mg(NO3)2 loading on catalytic pyrolysis of sawdust for bio-oil and MgO-impregnated biochar production. J Anal Appl Pyrol 152:104962. https://doi.org/10.1016/j.jaap.2020.104962

    Article  Google Scholar 

  39. Shen F, Fu J, Zhang X, Qi X (2019) Crab shell-derived lotus rootlike porous carbon for high efficiency isomerization of glucose to fructose under mild conditions. ACS Sustain Chem Eng 7(4):4466–4472. https://doi.org/10.1021/acssuschemeng.8b06512

    Article  CAS  Google Scholar 

  40. Suttibut P, Suriye K, S. Kunjara Na Ayudhya, P. Praserthdam, J. Panpranot, (2015) Effect of N2 pretreatment on the basicity, structural change, and isomerization activity of MgO and MgO/Mg(OH)2 catalysts. Asia-Pac J Chem Eng 10(2):248–258. https://doi.org/10.1002/apj.1869

    Article  CAS  Google Scholar 

  41. Chen SS, Cao Y, Tsang DCW, Tessonnier J-P, Shang J, Hou D, Shen Z, Zhang S, Ok YS, Wu KCW (2020) Effective dispersion of MgO nanostructure on biochar support as a basic catalyst for glucose isomerization. ACS Sustain Chem Eng 8(18):6990–7001. https://doi.org/10.1021/acssuschemeng.0c00278

    Article  CAS  Google Scholar 

  42. Mutreja V, Singh S, Ali A (2011) Biodiesel from mutton fat using KOH impregnated MgO as heterogeneous catalysts. Renew Energ 36(8):2253–2258. https://doi.org/10.1016/j.renene.2011.01.019

    Article  CAS  Google Scholar 

  43. Yang L, Shuang E, Liu J, Sheng K, Zhang X (2022) Endogenous calcium enriched hydrochar catalyst derived from water hyacinth for glucose isomerization. Sci Total Environ 807(Pt 2):150660. https://doi.org/10.1016/j.scitotenv.2021.150660

    Article  CAS  PubMed  Google Scholar 

  44. Carraher JM, Fleitman CN, Tessonnier J-P (2015) Kinetic and mechanistic study of glucose isomerization using homogeneous organic brønsted base catalysts in water. ACS Catal 5(6):3162–3173. https://doi.org/10.1021/acscatal.5b00316

    Article  CAS  Google Scholar 

  45. Liu H, Wang H, Lu X, Murugadoss V, Huang M, Yang H, Wan F, Yu D-G, Guo Z (2022) Electrospun structural nanohybrids combining three composites for fast helicide delivery. Adv Compos Hybrid Ma 5(2):1017–1029. https://doi.org/10.1007/s42114-022-00478-3

    Article  CAS  Google Scholar 

  46. Yin G, Tao L, Chen X, Bolan NS, Sarkar B, Lin Q, Wang H (2021) Quantitative analysis on the mechanism of Cd(2+) removal by MgCl(2)-modified biochar in aqueous solutions. J Hazard Mater 420:126487. https://doi.org/10.1016/j.jhazmat.2021.126487

    Article  CAS  PubMed  Google Scholar 

  47. Norton AM, Nguyen H, Xiao NL, Vlachos DG (2018) Direct speciation methods to quantify catalytically active species of AlCl(3) in glucose isomerization. RSC Adv 8(31):17101–17109. https://doi.org/10.1039/c8ra03088j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yu IKM, Tsang DCW, Yip ACK, Chen SS, Ok YS, Poon CS (2016) Valorization of food waste into hydroxymethylfurfural: Dual role of metal ions in successive conversion steps. Bioresour Technol 219:338–347. https://doi.org/10.1016/j.biortech.2016.08.002

    Article  CAS  PubMed  Google Scholar 

  49. Lu T, Chen Q (2021) Interaction region indicator: a simple real space function clearly revealing both chemical bonds and weak interactions**. Chemistry-Methods 1(5):231–239. https://doi.org/10.1002/cmtd.202100007

    Article  CAS  Google Scholar 

  50. Lu T, Chen F (2012) Multiwfn: a multifunctional wavefunction analyzer. J Comput Chem 33(5):580–592. https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  51. Lu T, Chen F (2012) Quantitative analysis of molecular surface based on improved marching tetrahedra algorithm. J Mol Graph Model 38:314–323. https://doi.org/10.1016/j.jmgm.2012.07.004

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was sponsored by the National Natural Science Foundation of China (grant no. 22268007); Natural Science Foundation of Guangxi Province, China (grant no. 2021GXNSFDA196006); Guangxi Science and Technology Major Pro-gram (Guike AA22117013); Innovation Project of Guangxi Graduate Education (grant no. YCBZ2023020). AJR efforts were supported by the University of Tennessee, Knoxville.

Author information

Authors and Affiliations

Authors

Contributions

Xiheng Kang: Conceptualization, data curation, investigation, methodology, project administration, DFT, Multiwfn, supervision, validation, visualization, writing (original draft), writing—review and editing. Zi You: Methodology, validation, visualization. Yongheng Huang: Resource. Jian Peng: Software. Junhua Zhang: Methodology. Arthur J. Ragauskas: Formal analysis, funding acquisition, writing—review and editing. Zhanying Zhang: Methodology. Xueping Song: Methodology, project administration, supervision, validation, visualization, writing (original draft), writing—review and editing.

Corresponding author

Correspondence to Xueping Song.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 961 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, X., You, Z., Huang, Y. et al. Multi-catalytic active site biochar-based catalysts for glucose isomerized to fructose: Experiments and density functional theory study. Adv Compos Hybrid Mater 7, 54 (2024). https://doi.org/10.1007/s42114-024-00861-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00861-2

Keywords

Navigation