Skip to main content
Log in

Designing the microstructural architecture of bioinspired hierarchical hybrid nanocomposites

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

This study focuses on investigating the microstructural architecture of bioinspired hierarchical graphene nanoplatelets-(GnPs) and glass fiber-(GF) reinforced polypropylene-based hybrid composites and its impact on mechanical performance. A novel approach to control the self-assembly behavior of hierarchically structured fibrous reinforcements is presented, achieved by tailoring the surface chemistry of the GFs to optimize the density of covalently bonded GnPs. Structure-property relationships were established by comparing the GnP bonding density on the GFs and degree of trans-crystallization as a function of amino-surface modification with the mechanical performance of the fabricated composites. Tailoring the microstructural architecture can significantly improve the mechanical properties of these hybrid composites, due to improved stress transfer at the interface. This improvement arises from the increased interfacial area of the hierarchically structured hybrid reinforcement, which facilitates trans-crystalline growth at the interface. Additionally, the remaining un-bonded GnPs facilitate β-crystal nucleation in the bulk, improving the composite’s toughness. The hybrid composite with the highest GnP bonding density and the greatest degree of trans-crystallization demonstrates exceptional mechanical performance. Specifically, this hybrid composite exhibits an impact strength of ~ 63% greater than that without hierarchical reinforcement, along with tensile strength and toughness improvements of ~ 40% and ~ 77%, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data are available on request from the corresponding author.

References

  1. Ortiz C, Boyce MC (2008) Bioinspired structural materials. Science 319(5866):1053–1054

    Article  CAS  PubMed  Google Scholar 

  2. Liu Z, Meyers MA, Zhang Z, Ritchie RO (2017) Functional gradients and heterogeneities in biological materials: Design principles, functions, and bioinspired applications. Prog Mater Sci 88:467–498

    Article  CAS  Google Scholar 

  3. Wegst UG, Bai H, Saiz E, Tomsia AP, Ritchie RO (2015) Bioinspired structural materials. Nat Mater 14(1):23–36

    Article  CAS  PubMed  Google Scholar 

  4. Nepal D, Kang S, Adstedt KM, Kanhaiya K, Bockstaller MR, Brinson LC, Buehler MJ et al (2023) Hierarchically structured bioinspired nanocomposites. Nat Mater 22(1):18–35

    Article  CAS  PubMed  Google Scholar 

  5. Maghsoudi-Ganjeh M, Lin L, Wang X, Zeng X (2019) Bioinspired design of hybrid composite materials. Int J Smart Nano Mater 10(1):90–105

    Article  Google Scholar 

  6. Ota WN, Amico SC, Satyanarayana KG (2005) Studies on the combined effect of injection temperature and fiber content on the properties of polypropylene-glass fiber composites. Compos Sci Technol 65(6):873–881

    Article  CAS  Google Scholar 

  7. Pedrazzoli D, Pegoretti A (2014) Expanded graphite nanoplatelets as coupling agents in glass fiber reinforced polypropylene composites. Compos A Appl Sci Manuf 66:25–34

    Article  CAS  Google Scholar 

  8. Thomason JL (2005) The influence of fiber length and concentration on the properties of glass fiber reinforced polypropylene. 6. The properties of injection moulded long fiber PP at high fiber content. Compos A Appl Sci 36(7):995–1003

    Article  Google Scholar 

  9. Joo SJ, Yu MH, Kim WS, Lee JW, Kim HS (2020) Design and manufacture of automotive composite front bumper assemble component considering interfacial bond characteristics between over-molded chopped glass fiber polypropylene and continuous glass fiber polypropylene composite. Compos Struct 236:111849

    Article  Google Scholar 

  10. Anandakumar P, Timmaraju MV, Velmurugan R (2021) Development of efficient short/continuous fiber thermoplastic composite automobile suspension upper control arm. Materials Today: Proceedings 39:1187–1191

    CAS  Google Scholar 

  11. Cha J, Kim J, Ryu S, Hong SH (2019) Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets. Compos B Eng 162:283–288

    Article  CAS  Google Scholar 

  12. Chatterjee S, Nafezarefi F, Tai NH, Schlagenhauf L, Nüesch FA, Chu BTT (2012) Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites. Carbon 50(15):5380–5386

    Article  CAS  Google Scholar 

  13. Chammingkwan P, Matsushita K, Taniike T, Terano M (2016) Enhancement in mechanical and electrical properties of polypropylene using graphene oxide grafted with end-functionalized polypropylene. Materials 9:146

    Article  Google Scholar 

  14. Yarmand H, Gharehkhani S, Ahmadi G, Shirazi SFS, Baradaran S, Montazer E et al (2015) Graphene nanoplatelets–silver hybrid nanofluids for enhanced heat transfer. Energy Convers Manag 100:419–428

    Article  CAS  Google Scholar 

  15. Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388

    Article  CAS  PubMed  Google Scholar 

  16. Sansone ND, Razzaz Z, Salari M, Tuccitto AV, Aguiar R, Leroux M, Lee PC (2022) tailoring multifunctional and lightweight hierarchical hybrid graphene nanoplatelet and glass fiber composites. ACS Appl Mater Interfaces 14(35):40232–40246

    Article  CAS  PubMed  Google Scholar 

  17. Salari M, Sansone ND, Razzaz Z, Taromsari SM, Leroux M, Park CB, Lee PC (2023) Insights into synergy-induced multifunctional property enhancement mechanisms in hybrid graphene nanoplatelet reinforced polymer composites. Chem Eng J 463:142406

    Article  CAS  Google Scholar 

  18. Zhang C, Mcadams DA, Grunlan JC (2016) Nano/micro-manufacturing of bioinspired materials: a review of methods to mimic natural structures. Adv Mater 28(30):6292–6321

    Article  CAS  PubMed  Google Scholar 

  19. An Y, Han J, Zhang X, Han W, Cheng Y, Ping Hu, Zhao G (2016) Bioinspired high toughness graphene/ZrB2 hybrid composites with hierarchical architectures spanning several length scales. Carbon 107:209–216

    Article  CAS  Google Scholar 

  20. Tarani E, Papageorgiou GZ, Bikiaris DN, Chrissafis K (2019) Kinetics of crystallization and thermal degradation of an isotactic polypropylene matrix reinforced with graphene/glass-fiber filler. Molecules. 24:1984. https://doi.org/10.3390/molecules24101984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Guerra V, Wan C, McNally T (2019) Nucleation of the β-polymorph in composites of poly(propylene) and graphene nanoplatelets. J Compos Sci 3:38. https://doi.org/10.3390/jcs3020038

    Article  CAS  Google Scholar 

  22. Papageorgiou DG, Kinloch IA, Young RJ (2016) Hybrid multifunctional graphene/glass-fiber polypropylene composites. Compos Sci Technol 137:44–51

    Article  CAS  Google Scholar 

  23. Pedrazzoli D, Pegoretti A, Kalaitzidou K (2015) Synergistic effect of graphite nanoplatelets and glass fibers in polypropylene composites. J Appl Polym Sci. https://doi.org/10.1002/app.41682

    Article  Google Scholar 

  24. Kim JK, Mai YW (eds) (1998) Engineered interfaces in fiber reinforced composites. Elsevier

    Google Scholar 

  25. Velmurugan N, Manimaran G, Ravi S, Jayabalakrishnan D (2021) Effect of silanised reinforcements on thermal, wear, visco-elastic and fatigue behaviour of stitched E-glass fiber-reinforced epoxy hybrid composite. Journal of Rubber Research 24(1):41–50

    Article  CAS  Google Scholar 

  26. Turner Jones A, Aizlewood J (1964) Crystalline forms of isotactic polypropylene. Makromol Chem 75:134–158

    Article  CAS  Google Scholar 

  27. Juhász P, Varga J, Belina K, Belina G (2002) Efficiency of β-nucleating agents in propylene/α-olefin copolymers. J Macromol Sci Part B 41:1173–1189

    Article  Google Scholar 

  28. Thomason X, J. L. (2019) Glass fiber sizing: a review. Compos A Appl Sci Manuf 127:105619

    Article  Google Scholar 

  29. Kang A, H. J., & Blum, F. D. (1991) Structure and dynamics of amino functional silanes adsorbed on silica surfaces. J Phys Chem 95(23):9391–9396

    Article  CAS  Google Scholar 

  30. Metwalli C, E., Haines, D., Becker, O., Conzone, S., & Pantano, C. G. (2006) Surface characterizations of mono-, di-, and tri-aminosilane treated glass substrates. J Colloid Interface Sci 298(2):825–831

    Article  CAS  PubMed  Google Scholar 

  31. Brochier Salon Z, M. C., & Belgacem, M. N. (2011) Hydrolysis-condensation kinetics of different silane coupling agents. Phosphorus Sulfur Silicon 186(2):240–254

    Article  CAS  Google Scholar 

  32. Pantano CG, Wittberg TN (1990) XPS analysis of silane coupling agents and silane-treated E-glass fibers. Surf Interface Anal 15:498–501

    Article  CAS  Google Scholar 

  33. Yu S, Oh KH, Hwang JY, Hong SH (2019) The effect of amino-silane coupling agents having different molecular structures on the mechanical properties of basalt fiber-reinforced polyamide 6, 6 composites. Compos B Eng 163:511–521

    Article  CAS  Google Scholar 

  34. Kannan Y, B., Higgins, D. A., & Collinson, M. M. (2012) Aminoalkoxysilane reactivity in surface amine gradients prepared by controlled-rate infusion. Langmuir 28(46):16091–16098

    Article  CAS  PubMed  Google Scholar 

  35. Ashraf B, K. M., Wang, C., Nair, S. S., Wynne, K. J., Higgins, D. A., & Collinson, M. M. (2017) Base layer influence on protonated aminosilane gradient wettability. Langmuir 33(17):4207–4215

    Article  CAS  PubMed  Google Scholar 

  36. Jun YS, Um JG, Jiang G, Lui G, Yu A (2018) Ultra-large sized graphene nano-platelets (GnPs) incorporated polypropylene (PP)/GnPs composites engineered by melt compounding and its thermal, mechanical, and electrical properties. Compos Part B Eng 133:218–225. https://doi.org/10.1016/j.compositesb.2017.09.028

    Article  CAS  Google Scholar 

  37. Bednarek WH, Paukszta D, Szostak M, Szymańska J (2021) Fundamental studies on shear-induced nucleation and β-phase formation in the isotactic polypropylene—effect of the temperature. J Polym Res 28(11):1–9

    Article  Google Scholar 

  38. Van Der Meer DW (2003) Structure-property relationships in isotactic polypropylene, University of Twente. http://www.tup.utwente.nl/. Accessed 9 Jul 2021

  39. Ferrage E, Martin F, Boudet A, Petit S, Fourty G, Jouffret F, Micoud P, De Parseval P, Salvi S, Bourgerette C, Ferret J, Saint-Gerard Y, Buratto S, Fortune JP (2002) Talc as nucleating agent of polypropylene: morphology induced by lamellar particles addition and interface mineral-matrix modelization. J Mater Sci 37:1561–1573. https://doi.org/10.1023/A:1014929121367

    Article  CAS  Google Scholar 

  40. Beuguel Q, Boyer SAE, Settipani D, Monge G, Haudin JM, Vergnes B, Peuvrel-Disdier E (2018) Crystallization behavior of polypropylene/graphene nanoplatelets composites. Polym Cryst 1:2–11. https://doi.org/10.1002/pcr2.10024

    Article  CAS  Google Scholar 

  41. Huang CL, Wang C (2011) Polymorphism and trans-crystallization of syndiotactic polystyrene composites filled with carbon nanotubes. Eur Polymer J 47(11):2087–2096

    Article  CAS  Google Scholar 

  42. Haggenmueller R, Fischer JE, Winey KI (2006) Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites. Macromolecules 39(8):2964–2971

    Article  CAS  Google Scholar 

  43. Beuguel Q, Boyer SA, Settipani D, Monge G, Haudin JM, Vergnes B, Peuvrel-Disdier E (2018) Crystallization behavior of polypropylene/graphene nanoplatelets composites. Polymer Crystallization 1(3):e10024

    Article  Google Scholar 

  44. Mileva D, Wang J, Gahleitner M, Jariyavidyanont K, Androsch R (2020) New insights into crystallization of heterophasic isotactic polypropylene by fast scanning chip calorimetry. Polymers 12(8):1683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schawe JE, Vermeulen PA, van Drongelen M (2015) Two processes of α-phase formation in polypropylene at high supercooling. Thermochim Acta 20(616):87–91

    Article  Google Scholar 

  46. Mollova A, Androsch R, Mileva D, Gahleitner M, Funari SS (2013) Crystallization of isotactic polypropylene containing β-phase nucleating agent at rapid cooling. Eur Polymer J 49(5):1057–1065

    Article  CAS  Google Scholar 

  47. Mileva D, Androsch R (2012) Effect of co-unit type in random propylene copolymers on the kinetics of mesophase formation and crystallization. Colloid Polym Sci 290:465–471

    Article  CAS  Google Scholar 

  48. Nishitani Y, Sekiguchi I, Hausnerová B, Zdrazilova N, Kitano T (2007) Rheological properties of aminosilane surface treated short glass fiber reinforced polypropylenes. Part 1: Steady shear and oscillatory flow properties in molten state. Polym Polym Compos 15(2):111–9

    CAS  Google Scholar 

  49. Ning N, Fu S, Zhang W, Chen F, Wang K, Deng H, Zhang Q, Fu Q (2012) Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Prog Polym Sci 37:1425–1455. https://doi.org/10.1016/j.progpolymsci.2011.12.005

    Article  CAS  Google Scholar 

  50. Cui J, Wang S, Wang S, Li G, Wang P, Liang C (2019) The effects of strain rates on mechanical properties and failure behavior of long glass fiber reinforced thermoplastic composites. Polymers (Basel) 11(12):2019. https://doi.org/10.3390/polym11122019

    Article  CAS  PubMed  Google Scholar 

  51. Varga J (2002) β-modification of isotactic polypropylene: Preparation, structure, processing, properties, and application. J Macromol Sci Phys 41B:1121–1171. https://doi.org/10.1081/MB-120013089

    Article  CAS  Google Scholar 

  52. Papageorgiou DG, Chrissafis K, Bikiaris DN (2015) β-Nucleated polypropylene: processing, properties and nanocomposites. Polym Rev 55:596–629. https://doi.org/10.1080/15583724.2015.1019136

    Article  CAS  Google Scholar 

Download references

Funding

The authors are grateful for the financial support provided by Axiom Group Inc., MITACS (IT28094), and NSERC Alliance (ALLRP570403-21) for this project. Additionally, the authors express their appreciation to NanoXplore for their gracious donation of materials.

Author information

Authors and Affiliations

Authors

Contributions

N.D.S. and R.A.: conceptualization, methodology, formal analysis, investigation, writing—original draft, and writing—review and editing; A.A.: conceptualization, methodology, investigation, and writing—review and editing; N.C.: conceptualization, investigation, and writing—review and editing; Z.R. and M.L.: project administration, supervision, and investigation; P.C.L.: conceptualization, writing—review and editing, funding acquisition, project administration, and supervision. All authors reviewed, authorized, and agreed to the submission of the manuscript.

Corresponding author

Correspondence to Patrick C. Lee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4153 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguiar, R., Sansone, N.D., Anstey, A. et al. Designing the microstructural architecture of bioinspired hierarchical hybrid nanocomposites. Adv Compos Hybrid Mater 7, 49 (2024). https://doi.org/10.1007/s42114-024-00854-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00854-1

Keywords

Navigation