Skip to main content

Advertisement

Log in

Tai-Chi hydrogel with Chinese philosophy and photothermal properties for accelerated diabetic wound healing

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Bacterial cellulose (BC) and photothermal hydrogels are widely used currently in wound repair. However, modified and functionalized BC may damage the advantages of natural BC which limits its application as a wound dressing, and photothermal hydrogels have a problem of secondary damage by overheating during the photothermal therapy process. Therefore, a Tai-Chi hydrogel inspired by the Chinese philosophy of “Tai Chi” was developed, which consists of BC, namely, Yin, and polyvinyl alcohol/polydopamine (PVA/PDA), namely, Yang. Two hydrogels of Tai-Chi hydrogel have opposite properties to selectively cover healthy skin and the wound and to adjust/balance the wound temperature under NIR irradiation. In vitro experiments demonstrate that mild warm caused by Yang hydrogel under NIR irradiation promotes polarization of RAW 264.7 macrophages to M2 phenotype. Tai-Chi hydrogel itself has a significant therapeutic effect on a diabetic wound by regulating the inflammatory microenvironment. In addition, Tai-Chi hydrogel in combination with NIR irradiation exhibited a remarkably therapeutic effect by promoting re-epithelialization and angiogenesis, accelerating collagen deposition and macrophage polarization to M2 phenotype. This work first presents a novel strategy for designing functional materials with opposite properties inspired by the philosophy of “Yin-Yang” in “Tai Chi” as a diabetic wound dressing.

Graphical Abstract

TOC

Tai-Chi hydrogel was first developed in this study inspired by the Chinese philosophy of “Tai Chi,” which consists of Yin and Yang hydrogel with opposite properties. Tai-Chi hydrogel itself has a significant therapeutic effect on a diabetic wound by regulating the inflammatory microenvironment. Furthermore, in combination with NIR irradiation, the Tai-Chi hydrogel exhibited a remarkably therapeutic effect by promoting re-epithelialization and angiogenesis, accelerating collagen deposition and macrophage polarization to M2 phenotype, especially at the early stage of the healing process (day 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. He M, Wang Z, Yang H, Wang Q, Xiang D, Pang X, Chan YK, Sun D, Yin G, Yang W, Deng Y (2023) Multi-functional bio-hjzyme: revolutionizing diabetic skin regeneration with its glucose-unlocked sterilization and programmed anti-inflammatory effects. Adv Sci 10:2300986. https://doi.org/10.1002/advs.202300986

    Article  CAS  Google Scholar 

  2. Davis FM, Kimball A, Boniakowski A, Gallagher K (2018) Dysfunctional wound healing in diabetic foot ulcers: new crossroads. Curr Diabetes Rep 18(1). https://doi.org/10.1007/s11892-018-0970-z

  3. Doruel H, Aydemir M, Balci MK (2022) Management of diabetic foot ulcers and the challenging points: an endocrine view. World J of Diabetes 13(1):27–36. https://doi.org/10.4239/wjd.v13.i1.27

    Article  Google Scholar 

  4. Broughton G, Janis JE, Attinger CE (2006) Wound healing: an overview. Plast Reconstr Surg 117(7):294s–294s. https://doi.org/10.1097/01.prs.0000222562.60260.f9

    Article  CAS  Google Scholar 

  5. Wang L, Chen G, Fan L, Chen H, Zhao Y, Lu L, Shang L (2023) Biomimetic enzyme cascade structural color hydrogel microparticles for diabetic wound healing management. Adv Sci 10(14):2206900. https://doi.org/10.1002/advs.202206900

    Article  CAS  Google Scholar 

  6. Lou D, Luo Y, Pang Q, Tan WQ, Ma L (2020) Gene-activated dermal equivalents to accelerate healing of diabetic chronic wounds by regulating inflammation and promoting angiogenesis. Bioactive Materials 5(3):667–679. https://doi.org/10.1016/j.bioactmat.2020.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhu SL, Zhao BJ, Li MC, Wang H, Zhu JY, Li QT, Gao HC, Feng Q, Cao XD (2023) Microenvironment responsive nanocomposite hydrogel with nir photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing. Bioact Mater 26(306–320). https://doi.org/10.1016/j.bioactmat.2023.03.005

  8. Sidheekha MP, Shabeeba A, Rajan L, Thayyil MS, Ismail YA (2023) Conducting polymer/hydrogel hybrid free-standing electrodes for flexible supercapacitors capable of self-sensing working conditions: large-scale fabrication through facile and low-cost route. Eng Sci 23(890). https://doi.org/10.30919/es890

  9. Li T, Wei H, Zhang Y, Wan T, Cui D, Zhao S, Zhang T, Ji Y, Algadi H, Guo Z, Chu L, Cheng B (2023) Sodium alginate reinforced polyacrylamide/xanthan gum double network ionic hydrogels for stress sensing and self-powered wearable device applications. Carbohyd Polym 309(120678). https://doi.org/10.1016/j.carbpol.2023.120678

  10. Wang M, Yuan N, Wang X, Ning X, Chen C, Lin D (2023) Thermal-induced phase transition hydrogel revealed with photonic crystal. ES Energy  Environ 19(811). https://doi.org/10.30919/esee8c811

  11. Qin Z, Zhao G, Zhang Y, Gu Z, Tang Y, Aladejana JT, Ren J, Jiang Y, Guo Z, Peng X, Zhang X, Xu BB, Chen T (2023) A simple and effective physical ball-milling strategy to prepare super-tough and stretchable PVA@MXene@PPy hydrogel for flexible capacitive electronics. Small 19(45):2303038. https://doi.org/10.1002/smll.202303038

    Article  CAS  Google Scholar 

  12. Wang J, Tavakoli J, Tang Y (2019) Bacterial cellulose production, properties and applications with different culture methods - a review. Carbohyd Polym 219(63–76). https://doi.org/10.1016/j.carbpol.2019.05.008

  13. Manan S, Ullah MW, Ul-Islam M, Shi ZJ, Gauthier M, Yang G (2022) Bacterial cellulose: molecular regulation of biosynthesis, supramolecular assembly, and tailored structural and functional properties. Prog Mater Sci 129. https://doi.org/10.1016/j.pmatsci.2022.100972

  14. Ullah MW, Manan S, Kiprono SJ, Ul-Islam M, Yang G (2019) Synthesis, structure, and properties of bacterial cellulose. John Wiley & Sons, Ltd, pp 81–113

    Google Scholar 

  15. Liu L, Ji XF, Mao L, Wang L, Chen K, Shi ZJ, Ahmed AAQ, Thomas S, Vasilievich RV, Xiao L, Li XH, Yang G (2022) Hierarchical-structured bacterial cellulose/potato starch tubes as potential small-diameter vascular grafts. Carbohyd Polym 281. https://doi.org/10.1016/j.carbpol.2021.119034

  16. Khan S, Ul-Islam M, Ikram M, Ullah MW, Israr M, Subhan F, Kim Y, Jang JH, Yoon S, Park JK (2016) Three-dimensionally microporous and highly biocompatible bacterial cellulose-gelatin composite scaffolds for tissue engineering applications. Rsc Adv 6(112):110840–110849. https://doi.org/10.1039/C6RA18847H

    Article  CAS  Google Scholar 

  17. Boni BOO, Lamboni L, Mao L, Bakadia BM, Shi Z, Yang G (2022) In vivo performance of microstructured bacterial cellulose-silk sericin wound dressing: effects on fibrosis and scar formation. Eng Sci 19(175–185). https://doi.org/10.30919/es8d700

  18. Mao L, Hu SM, Gao YH, Wang L, Zhao WW, Fu LN, Cheng HY, Xia L, Xie SX, Ye WL, Shi ZJ, Yang G (2020) Biodegradable and electroactive regenerated bacterial cellulose/mxene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation. Adv Healthc Mater 9(19). https://doi.org/10.1002/adhm.202000872

  19. Wang L, Mao L, Qi FY, Li XH, Ullah MW, Zhao M, Shi ZJ, Yang G (2021) Synergistic effect of highly aligned bacterial cellulose/gelatin membranes and electrical stimulation on directional cell migration for accelerated wound healing. Chem Eng J 424. https://doi.org/10.1016/j.cej.2021.130563

  20. Mao L, Wang L, Zhang M, Ullah MW, Liu L, Zhao W, Li Y, Ahmed AAQ, Cheng H, Shi Z, Yang G (2021) In situ synthesized selenium nanoparticles-decorated bacterial cellulose/gelatin hydrogel with enhanced antibacterial, antioxidant, and anti-inflammatory capabilities for facilitating skin wound healing. Adv Healthc Mater 10(14):2100402. https://doi.org/10.1002/adhm.202100402

    Article  CAS  Google Scholar 

  21. Zhu M, BaffouMeyerbroker GN, Polleux J (2012) Micropatterning thermoplasmonic gold nanoarrays to manipulate cell adhesion. ACS Nano 6(8):7227. https://doi.org/10.1021/nn302329c

    Article  CAS  PubMed  Google Scholar 

  22. Tang XM, Dai J, Sun HL (2019) Thermal pretreatment promotes the protective effect of hsp70 against tendon adhesion in tendon healing by increasing hsp70 expression. Mol Med Rep 20(1). https://doi.org/10.3892/mmr.2019.10240

  23. Matsuda M, Hoshino T, Yamakawa N, Tahara K, Adachi H, Sobue G, Maji D, Ihn H, Mizushima T (2013) Suppression of UV-induced wrinkle formation by induction of hsp70 expression in mice. J Invest Dermatol. https://doi.org/10.1038/jid.2012.383

    Article  PubMed  Google Scholar 

  24. Zhu S, Zhao B, Li M, Wang H, Zhu J, Li Q, Gao H, Feng Q, Cao X (2023) Microenvironment responsive nanocomposite hydrogel with NIR photothermal therapy, vascularization and anti-inflammation for diabetic infected wound healing. Bioact Mater 26(306–320). https://doi.org/10.1016/j.bioactmat.2023.03.005

  25. Sheng LL, Zhang ZWB, Zhang Y, Wang ED, Ma B, Xu Q, Ma LL, Zhang M, Pei G, Chang J (2021) A novel “hot spring”-mimetic hydrogel with excellent angiogenic properties for chronic wound healing. Biomaterials 264. https://doi.org/10.1016/j.biomaterials.2020.120414

  26. Jiang L, Wu X, Wang Y, Liu C, Wu Y, Wang J, Xu N, He Z, Wang S, Zhang H, Wang X, Lu X, Tan Q, Sun X (2023) Photothermal controlled-release immunomodulatory nanoplatform for restoring nerve structure and mechanical nociception in infectious diabetic ulcers. Adv Sci 10(20):2300339. https://doi.org/10.1002/advs.202300339

    Article  CAS  Google Scholar 

  27. Zhao Y, Li ZH, Song SL, Yang KR, Liu H, Yang Z, Wang JC, Yang B, Lin Q (2019) Skin-inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings. Adv Funct Mater 29(31). https://doi.org/10.1002/adfm.201901474

  28. Yu DG, Zhou J (2023) How can electrospinning further service well for pharmaceutical researches? J Pharm Sci 112(11):2719–2723. https://doi.org/10.1016/j.xphs.2023.08.017

    Article  CAS  PubMed  Google Scholar 

  29. Yu DG, Huang C (2023) Electrospun biomolecule-based drug delivery systems Biomolecules 13(7):1152. https://doi.org/10.3390/biom13071152

    Article  CAS  PubMed  Google Scholar 

  30. Liu H, Wang H, Lu X, Murugadoss V, Huang M, Yang H, Wan F, Yu DG, Guo Z (2022) Electrospun structural nanohybrids combining three composites for fast helicide delivery. Adv Compos Hybrid Mater 5(2):1017–1029. https://doi.org/10.1007/s42114-022-00478-3

    Article  CAS  Google Scholar 

  31. Zhou J, Yi T, Zhang Z, Yu DG, Liu P, Wang L, Zhu Y (2023) Electrospun janus core (ethyl cellulose//polyethylene oxide) @ shell (hydroxypropyl methyl cellulose acetate succinate) hybrids for an enhanced colon-targeted prolonged drug absorbance. Adv Compos Hybrid Mater 6(6):189. https://doi.org/10.1007/s42114-023-00766-6

    Article  CAS  Google Scholar 

  32. Li Y, Wang D, Ping X, Zhang Y, Zhang T, Wang L, Jin L, Zhao W, Guo M, Shen F, Meng M, Chen X, Zheng Y, Wang J, Li D, Zhang Q, Hu C, Xu L, Ma X (2022) Local hyperthermia therapy induces browning of white fat and treats obesity. Cell 185(6):949–966 e919. https://doi.org/10.1016/j.cell.2022.02.004

  33. Bakadia BM, Lamboni L, Qaed Ahmed AA, Zheng R, Ode Boni BO, Shi Z, Song S, Souho T, Mukole BM, Qi F, Yang G (2023) Antibacterial silk sericin/poly (vinyl alcohol) hydrogel with antifungal property for potential infected large burn wound healing: systemic evaluation. Smart Mater Med 4(37–58). https://doi.org/10.1016/j.smaim.2022.07.002

  34. Nanney LB (1990) Epidermal and dermal effects of epidermal growth factor during wound repair. J Invest Dermatol 94(5):624–629. https://doi.org/10.1111/1523-1747.ep12876204

    Article  CAS  PubMed  Google Scholar 

  35. Rubin JS, Osada H, Finch PW, Taylor WG, Rudikoff S, Aaronson SA (1989) Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc Natl Acad Sci U S A 86(3):802–806. https://doi.org/10.1073/pnas.86.3.802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bennett SP, Griffiths GD, Schor AM, Leese GP, Schor SL (2003) Growth factors in the treatment of diabetic foot ulcers. Br J Surg 90(2):133–146. https://doi.org/10.1002/bjs.4019

    Article  CAS  PubMed  Google Scholar 

  37. Bartolo I, Reis RL, Marques AP, Cerqueira MT (2022) Keratinocyte growth factor-based strategies for wound re-epithelialization. Tissue Eng Part B Rev 28(3):665–676. https://doi.org/10.1089/ten.TEB.2021.0030

    Article  CAS  PubMed  Google Scholar 

  38. Zenobi PD, Graf S, Ursprung H, Froesch ER (1992) Effects of insulin-like growth factor-i on glucose tolerance, insulin levels, and insulin secretion. J Clin Invest 89(6):1908–1913. https://doi.org/10.1172/JCI115796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Aydin F, Kaya A, Karapinar L, Kumbaraci M, Imerci A, Karapinar H, Karakuzu C, Incesu M (2013) Igf-1 increases with hyperbaric oxygen therapy and promotes wound healing in diabetic foot ulcers. J Diabetes Res. https://doi.org/10.1155/2013/567834

    Article  PubMed  PubMed Central  Google Scholar 

  40. Balaji S, Lesaint M, Bhattacharya SS, Moles C, Dhamija Y, Kidd M, Le LD, King A, Shaaban A, Crombleholme TM (2014) Adenoviral mediated gene transfer of igf-1 enhances wound healing and induces angiogenesis. J Surg Res 190(1):367. https://doi.org/10.1016/j.jss.2014.02.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Manning BD, Toker A (2017) Akt/pkb signaling: navigating the network. Cell 169(3):381–405. https://doi.org/10.1016/j.cell.2017.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee MY, Luciano AK, Ackah E, Rodriguez-Vita J, Sessa WC (2014) Endothelial akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates. Proc Natl Acad Sci USA 111(35):12865–12870. https://doi.org/10.1073/pnas.1408472111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bahr C, Groner B (2005) The igf-1 receptor and its contributions to metastatic tumor growth-novel approaches to the inhibition of igf-1r function. Growth Factors 23(1):1–14. https://doi.org/10.1080/08977190400020229

    Article  CAS  PubMed  Google Scholar 

  44. Xiong Y, Lin Z, Bu P, Yu T, Endo Y, Zhou W, Sun Y, Cao F, Dai G, Hu Y, Lu L, Chen L, Cheng P, Zha K, Shahbazi M-A, Feng Q, Mi B, Liu G (2023) A whole-course-repair system based on neurogenesis-angiogenesis crosstalk and macrophage reprogramming promotes diabetic wound healing. Adv Mater 35(19):2212300. https://doi.org/10.1002/adma.202212300

    Article  CAS  Google Scholar 

  45. Wei Y-t, Wang X-r, Yan C, Huang F, Zhang Y, Liu X, Wen Z-f, Sun X-t, Zhang Y, Chen Y-q, Gao R, Pan N, Wang L-x (2022) Thymosin α-1 reverses m2 polarization of tumor-associated macrophages during efferocytosis. Cancer Res 82(10):1991–2002. https://doi.org/10.1158/0008-5472.CAN-21-4260

    Article  CAS  PubMed  Google Scholar 

  46. Xiong Y, Mi BB, Lin Z, Hu YQ, Yu L, Zha KK, Panayi AC, Yu T, Chen L, Liu ZP (2022) The role of the immune microenvironment in bone, cartilage, and soft tissue regeneration: from mechanism to therapeutic opportunity. Military Med Res 9(1):65. https://doi.org/10.1186/s40779-022-00426-8

    Article  CAS  Google Scholar 

  47. Sylvestre M, Crane CA, Pun SH (2019) Progress on modulating tumor-associated macrophages with biomaterials. Adv Mater 32(13):1902007. https://doi.org/10.1002/adma.201902007

    Article  CAS  Google Scholar 

  48. Chavez-Galan L, Olleros ML, Vesin D, Garcia I (2015) Much more than m1 and m2 macrophages, there are also cd169(+) and tcr+ macrophages. Front Immunol 6. https://doi.org/10.3389/fimmu.2015.00263

  49. Murray Peter J, Allen Judith E, Biswas Subhra K, Fisher Edward A, Gilroy Derek W, Goerdt S, Gordon S, Hamilton John A, Ivashkiv Lionel B, Lawrence T, Locati M, Mantovani A, Martinez Fernando O, Mege J-L, Mosser David M, Natoli G, Saeij Jeroen P, Schultze Joachim L, Shirey Kari A, Sica A, Suttles J, Udalova I, van Ginderachter JA, Vogel Stefanie N, Wynn Thomas A (2014) Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 41(1):14–20. https://doi.org/10.1016/j.immuni.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gan J, Liu C, Li H, Wang S, Dong L (2019) Accelerated wound healing in diabetes by reprogramming the macrophages with particle-induced clustering of the mannose receptors. Biomaterials 219 (119340). https://doi.org/10.1016/j.biomaterials.2019.119340

  51. Jiang Y, Zhao W, Xu S, Wei J, Lasaosa FL, He Y, Mao H, Bailo R, Kong D, Gu Z (2022) Bioinspired design of mannose-decorated globular lysine dendrimers promotes diabetic wound healing by orchestrating appropriate macrophage polarization. Biomaterials 280(121323). https://doi.org/10.1016/j.biomaterials.2021.121323

  52. Qian Y, Zheng Y, Jin J, Wu X, Xu K, Dai M, Niu Q, Zheng H, He X, Shen J (2022) Immunoregulation in diabetic wound repair with a photoenhanced glycyrrhizic acid hydrogel scaffold. Adv Mater 34(29):2200521. https://doi.org/10.1002/adma.202200521

    Article  CAS  Google Scholar 

  53. Tu Z, Chen M, Wang M, Shao Z, Jiang X, Wang K, Yao Z, Yang S, Zhang X, Gao W (2021) Engineering bioactive m2 macrophage-polarized anti-inflammatory, antioxidant, and antibacterial scaffolds for rapid angiogenesis and diabetic wound repair. Adv Funct Mater. https://doi.org/10.1002/adfm.202100924

    Article  Google Scholar 

  54. Portela R, Leal CR, Almeida PL, Sobral RG (2019) Bacterial cellulose: a versatile biopolymer for wound dressing applications. Microb Biotechnol 12(4):586–610. https://doi.org/10.1111/1751-7915.13392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krishna Y, John L, Baier R (2006) IL-10, IL-6 and CD14 polymorphisms and sepsis outcome in ventilated very low birth weight infants. BMC Med 4(1):10–10. https://doi.org/10.1186/1741-7015-4-10

    Article  CAS  Google Scholar 

  56. Jekarl DW, Lee SY, Lee J, Park YJ, Kim Y, Park JH, Wee JH, Choi SP (2013) Procalcitonin as a diagnostic marker and IL-6 as a prognostic marker for sepsis. Diagn Micr Infec Dis 75(4):342–347. https://doi.org/10.1097/00000658-199204000-00009

    Article  CAS  Google Scholar 

  57. Dama P, Ledoux D, Nys M, Vrindts Y, Groote DD, Franchimont P, Lamy M (1992) Cytokine serum level during severe sepsis in human IL-6 as a marker of severity. Ann Surg 215(4):356. https://doi.org/10.1097/00000658-199204000-00009

    Article  Google Scholar 

  58. Arshad T, Mansur F, Palek R, Manzoor S, Liska V (2020) A double edged sword role of interleukin-22 in wound healing and tissue regeneration. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.02148

  59. Kolumam G, Wu XM, Lee WP, Hackney JA, Zavala-Solorio J, Gandham V, Danilenko DM, Arora P, Wang XT, Ouyang WJ (2017) IL-22R ligands IL-20, IL-22, and IL-24 promote wound healing in diabetic db/db mice. Plos One 12(1). https://doi.org/10.1371/journal.pone.0170639

  60. Mcgee HM, Schmidt BA, Booth CJ, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA, Horsley V (2013) IL-22 promotes fibroblast-mediated wound repair in the skin. J Invest Dermatol 133(5):1321–1329

    Article  CAS  PubMed  Google Scholar 

  61. Knipper JA, Ding X, Eming SA (2019) Diabetes impedes the epigenetic switch of macrophages into repair mode. Immunity 51(2):199–201. https://doi.org/10.1016/j.immuni.2019.07.009

    Article  CAS  PubMed  Google Scholar 

  62. Xiong Y, Chen L, Yan C, Zhou W, Endo Y, Liu J, Hu L, Hu Y, Mi B, Liu G (2020) Circulating exosomal mir-20b-5p inhibition restores wnt9b signaling and reverses diabetes-associated impaired wound healing. Small 16(3):1904044. https://doi.org/10.1002/smll.201904044

    Article  CAS  Google Scholar 

  63. Zhang J, Chen L, Xiao M, Wang C, Qin Z (2011) Fsp1+ fibroblasts promote skin carcinogenesis by maintaining mcp-1-mediated macrophage infiltration and chronic inflammation. Am J Pathol 178(1):382–390. https://doi.org/10.1016/j.ajpath.2010.11.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Strutz F, Okada H, Lo C, Danoff T, Carone R, Tomaszewski E, Neilson EG (1995) Identification and characterization of a fibroblast specific marker fsp1. J Cell Biol 130(2):393–405. https://doi.org/10.1083/jcb.130.2.393

    Article  CAS  PubMed  Google Scholar 

  65. Lawson WE, Polosukhin VV, Zoia O, Stathopoulos GT, Han W, Plieth D, Loyd JE, Neilson EG, Blackwell TS (2005) Characterization of fibroblast-specific protein 1 in pulmonary fibrosis. Am J Respir Crit Care Med 171(8):899–907. https://doi.org/10.1164/rccm.200311-1535OC

    Article  PubMed  Google Scholar 

  66. Schneider M, Kostin S, Strm CC, Aplin M, Lyngbk S, Theilade J, Grigorian M, Andersen CB, Lukanidin E, Hansen JL (2007) S100A4 is upregulated in injured myocardium and promotes growth and survival of cardiac myocytes. Cardiovasc Res 75(1):40–50. https://doi.org/10.1016/j.cardiores.2007.03.027

    Article  CAS  PubMed  Google Scholar 

  67. Gabbiani G, Lous ML, Bailey AJ, Bazin S, Delaunay A (1976) Collagen and myofibroblasts of granulation tissue-a chemical, ultrastructural and immunologic study. Virchows Archiv B Cell Pathology 21(2):133–145. https://doi.org/10.1007/BF02899150

    Article  CAS  PubMed  Google Scholar 

  68. Ramirez-Montagut T, Blachere NE, Sviderskaya EV, Bennett DC, Rettig WJ, Garin-Chesa P, Houghton AN (2004) FAPα, a surface peptidase expressed during wound healing, is a tumor suppressor. Oncogene 23(32):5435–5446. https://doi.org/10.1038/sj.onc.1207730

    Article  CAS  PubMed  Google Scholar 

  69. Jia J, Martin TA, Ye L, Meng L, Xia N, Jiang WG, Zhang X (2018) Fibroblast activation protein-alpha promotes the growth and migration of lung cancer cells via the pi3k and sonic hedgehog pathways. Int J Mol Med 41(1):275–283. https://doi.org/10.3892/ijmm.2017.3224

    Article  CAS  PubMed  Google Scholar 

  70. Goins A, Webb AR, Allen JB (2019) Multi-layer approaches to scaffold-based small diameter vessel engineering: a review. Mater Sci Eng 97(APR):896–912. https://doi.org/10.1016/j.msec.2018.12.067

  71. McMurtry AL, Cho K, Young LJT, Nelson CF, Greenhalgh DG (1999) Expression of hsp70 in healing wounds of diabetic and nondiabetic mice. J Surg Res 86(1):36–41. https://doi.org/10.1006/jsre.1999.5700

    Article  CAS  PubMed  Google Scholar 

  72. Singh K, Agrawal NK, Gupta SK, Mohan G, Chaturvedi S, Singh K (2015) Decreased expression of heat shock proteins may lead to compromised wound healing in type 2 diabetes mellitus patients. J Diabetes Complicat 29(4):578–588. https://doi.org/10.1016/j.jdiacomp.2015.01.007

    Article  Google Scholar 

  73. Jin CY, Zhou FQ, Zhang L, Shen J (2020) Overexpression of heat shock protein 70 enhanced mesenchymal stem cell treatment efficacy in phosgene-induced acute lung injury. J Biochem Mol Toxic 34(8). https://doi.org/10.1002/jbt.22515

Download references

Acknowledgements

The authors gratefully thanked the Analytical & Testing Centre and Core Facilities of Life Sciences of Huazhong University of Science and Technology for providing scientific research instruments.

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21774039, 51973076), BRICS STI Framework Programme 3rd call 2019, National Key Research and Development Program of China (2018YFE0123700), and the National Natural Science Foundation of Hubei Province of China for Young Scholars (2022CFB749).

The datasets and materials in this study are available from the corresponding author on reasonable request.

Author information

Authors and Affiliations

Authors

Contributions

Ruizhu Zheng: conceptualization, methodology, investigation, validation, data analysis, writing-original draft, review and editing. Li Liu: figure formal analysis supporting. Hao Wang, Pengyu He, Fuyu Qi and Xiao Long: methodology of animal experiments. Sanming Hu: financial support. Zhijun Shi: supervision, writing-review and editing. Guang Yang: supervision, project administration and main financial support. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhijun Shi or Guang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (ZIP 32531 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, R., Liu, L., Wang, H. et al. Tai-Chi hydrogel with Chinese philosophy and photothermal properties for accelerated diabetic wound healing. Adv Compos Hybrid Mater 7, 43 (2024). https://doi.org/10.1007/s42114-024-00847-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00847-0

Keywords

Navigation