Skip to main content
Log in

Understanding lightning damage formation in a carbon-epoxy Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) composite

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Lightning damage to composite aircraft structures results from a concurrent and sequential interaction between arc discharge multi-physics and the anisotropic electrical and thermal composite properties. In this study, the impact of nominal 50 and 125 kA lightning strikes on damage formation in a carbon-epoxy Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) was investigated. A combination of visual inspection, ultrasonic phased array testing, destructive sectioning, and various microscopy techniques was employed to characterize the damage. Localized damage, including severe matrix decomposition, melting of polyester warp-knitting yarns, fiber splitting, and large-scale delamination, was confined to the immediate vicinity of the lightning attachment point and was accompanied by more diffuse surface damage (i.e., widespread small-scale split fiber tufts and surface primer scorching). The severity and extent of internal damage increased with higher lightning current intensities but were limited to the outermost nine-ply warp-knitted skin stack. Electrically non-conductive through-thickness Vectran stitches and polyester warp-knitting yarns had a profound effect in mitigating lightning damage formation. These results suggest that such through-thickness reinforcement can dramatically enhance the lightning damage resistance and tolerance of composite aircraft structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data produced or analyzed in this study are included in this manuscript. Any requests for additional data can be directed to the corresponding author.

References

  1. Luinge H, Warnet LL (2020) On an application of multi-material composite laminates in the aerospace sector. Adv Compos Hybrid Mater 3:294–302. https://doi.org/10.1007/s42114-020-00163-3

    Article  Google Scholar 

  2. Das TK, Ghosh P, Das NC (2019) Preparation, development, outcomes, and application versatility of carbon fiber-based polymer composites: a review. Adv Compos Hybrid Mater 2:214–233. https://doi.org/10.1007/s42114-018-0072-z

    Article  CAS  Google Scholar 

  3. Ince JC, Peerzada M, Mathews LD, Pai AR, Al-qatatsheh A, Abbasi S, Yin Y, Hameed N, Duffy AR, Lau AK, Salim NV (2023) Overview of emerging hybrid and composite materials for space applications. Adv Compos Hybrid Mater 6:130. https://doi.org/10.1007/s42114-023-00678-5

    Article  Google Scholar 

  4. Giurgiutiu V (2016) Chapter 1 - introduction. In: Giurgiutiu V (ed) Structural health monitoring of aerospace composites. Academic Press, Oxford, pp 1–23

    Google Scholar 

  5. Fisher FA, Plumer JA (1977) Lightning protection of aircraft (Report no. NASA RP-1008). National Aeronautics and Space Administration. https://ntrs.nasa.gov/citations/19780003081

  6. Wikipedia contributors (2023, December 8). Pan Am Flight 214. In Wikipedia, The Free Encyclopedia. Retrieved 21:29, February 12, 2024, from https://en.wikipedia.org/w/index.php?title=Pan_Am_Flight_214&oldid=1188928184

  7. Rupke E (2002) Lightning direct effects handbook. Lightning Technologies Inc, Pittsfield

    Google Scholar 

  8. Kawakami H (2011) Lightning strike induced damage mechanisms of carbon fiber composites (Publication no. 3501873). Doctoral dissertation, University of Washington. ProQuest Dissertations and Theses database. https://www.proquest.com/docview/952334670

  9. Chemartin L, Lalande P, Peyrou B, Chazottes A, Elias P, Delalondre C, Cheron B, Lago F (2012) Direct effects of lightning on aircraft structure: analysis of the thermal, electrical and mechanical constraints. Aerosp Lab 5:1–15. https://hal.science/hal-01184416

  10. Lee J, Lacy TE Jr, Pittman CU Jr, Mazzola MS (2018) Temperature-dependent thermal decomposition of carbon/epoxy laminates subjected to simulated lightning currents. Polym Compos 39:E2185–E2198. https://doi.org/10.1002/pc.24535

    Article  CAS  Google Scholar 

  11. Kumar V, Yokozeki T, Karch C, Hassen AA, Hershey CJ, Kim S, Lindahl JM, Barnes A, Bandari YK, Kunc V (2020) Factors affecting direct lightning strike damage to fiber reinforced composites: A review. Compos B Eng 183:107688. https://doi.org/10.1016/j.compositesb.2019.107688

    Article  CAS  Google Scholar 

  12. Asmatulu R, Bollavaram PK, Patlolla VR, Alarifi IM, Khan WS (2020) Investigating the effects of metallic submicron and nanofilms on fiber-reinforced composites for lightning strike protection and EMI shielding. Adv Compos Hybrid Mater 3:66–83. https://doi.org/10.1007/s42114-020-00135-7

    Article  CAS  Google Scholar 

  13. Lee J, Lacy TE Jr, Pittman CU Jr (2021) Coupled thermal electrical and mechanical lightning damage predictions to carbon/epoxy composites during arc channel shape expansion. Compos Struct 255:112912. https://doi.org/10.1016/j.compstruct.2020.112912

    Article  CAS  Google Scholar 

  14. Kumar V, Yeole P, Majed A, Park C, Li K, Naguib M, Ravindranath PK, Jafta C, Spencer R, Compton B, Vaidya U, Kunc V (2021) MXene reinforced thermosetting composite for lightning strike protection of carbon fiber reinforced polymer. Adv Mater Interfaces 8:2100803. https://doi.org/10.1002/admi.202170091

    Article  CAS  Google Scholar 

  15. Sun J, Tian X, Li Y, Wu Y, Duan Y, Chen J, Ziegmann G, Rong M, Yao X, Wang B (2021) Lightning strike-induced dynamic conduction characteristics and damage behavior of carbon fiber-reinforced polymer composites. Compos Struct 275:114391. https://doi.org/10.1016/j.compstruct.2021.114391

    Article  CAS  Google Scholar 

  16. Millen SLJ, Ashworth S, Farrell C, Murphy A (2022) Understanding and representing heating and heating rate effects on composite material properties for lightning strike direct effect simulations. Compos B Eng 228:109438. https://doi.org/10.1016/j.compositesb.2021.109438

    Article  Google Scholar 

  17. Dickinson L, Fletcher NH (2009) Acoustic detection of invisible damage in aircraft composite panels. Appl Acoust 70:110–119

    Article  Google Scholar 

  18. Polimeno U, Meo M (2009) Detecting barely visible impact damage detection on aircraft composites structures. Compos Struct 91:398–402

    Article  Google Scholar 

  19. Fahr A, Kandeil AY (1992) Ultrasonic C-scan inspection of composite materials. Eng J Qatar Univ 5:201–222

    Google Scholar 

  20. Hopkins D, Neau G, Le Ber L (2012) Advanced phased-array technologies for ultrasonic inspection of complex composite parts. e-J Nondestruct Test 17:2. https://www.ndt.net/?id=11508

  21. Bossi RH, Giurgiutiu V (2015) 15 - Nondestructive testing of damage in aerospace composites. In: Irving PE, Soutis C (eds) Polymer composites in the aerospace industry. Woodhead Publishing, pp 413–448. https://doi.org/10.1016/B978-0-85709-523-7.00015-3

    Chapter  Google Scholar 

  22. Gholizadeh S (2016) A review of non-destructive testing methods of composite materials. Procedia Struct Integr 1:50–57. https://doi.org/10.1016/j.prostr.2016.02.008

    Article  Google Scholar 

  23. Wronkowicz A, Dragan K, Lis K (2018) Assessment of uncertainty in damage evaluation by ultrasonic testing of composite structures. Compos Struct 203:71–84. https://doi.org/10.1016/j.compstruct.2018.06.109

    Article  Google Scholar 

  24. Wang B, Zhong S, Lee T-L, Fancey KS, Mi J (2020) Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review. Adv Mech Eng 12:1687814020913761. https://doi.org/10.1177/1687814020913761

    Article  Google Scholar 

  25. Papa I, Lopresto V, Langella A (2021) Ultrasonic inspection of composites materials: Application to detect impact damage. Int J Lightweight Mater Manuf 4:37–42. https://doi.org/10.1016/j.ijlmm.2020.04.002

    Article  Google Scholar 

  26. Singh R (2020) Ultrasonic testing. In: Singh R (ed) Applied Welding Engineering (Third Edition): Butterworth-Heinemann. pp 347–58

    Chapter  Google Scholar 

  27. Hassen AA, Taheri H, Vaidya UK (2016) Non-destructive investigation of thermoplastic reinforced composites. Compos B Eng 97:244–254. https://doi.org/10.1016/j.compositesb.2016.05.006

    Article  CAS  Google Scholar 

  28. Feraboli P, Miller M (2009) Damage resistance and tolerance of carbon/epoxy composite coupons subjected to simulated lightning strike. Compos A Appl Sci Manuf 40:954–967. https://doi.org/10.1016/j.compositesa.2009.04.025

    Article  CAS  Google Scholar 

  29. Li Y, Li R, Lu L, Huang X (2015) Experimental study of damage characteristics of carbon woven fabric/epoxy laminates subjected to lightning strike. Compos A Appl Sci Manuf 79:164–175. https://doi.org/10.1016/j.compositesa.2015.09.019

    Article  CAS  Google Scholar 

  30. Hirano Y, Katsumata S, Iwahori Y, Todoroki A (2010) Artificial lightning testing on graphite/epoxy composite laminate. Compos A Appl Sci Manuf 41:1461–1470. https://doi.org/10.1016/j.compositesa.2010.06.008

    Article  CAS  Google Scholar 

  31. Kamiyama S, Hirano Y, Ogasawara T (2018) Delamination analysis of CFRP laminates exposed to lightning strike considering cooling process. Compos Struct 196:55–62

    Article  Google Scholar 

  32. Kawakami H, Feraboli P (2011) Lightning strike damage resistance and tolerance of scarf-repaired mesh-protected carbon fiber composites. Compos A Appl Sci Manuf 42:1247–1262

    Article  Google Scholar 

  33. Meola C, Boccardi S, Carlomagno G, Boffa N, Monaco E, Ricci F (2015) Nondestructive evaluation of carbon fibre reinforced composites with infrared thermography and ultrasonics. Compos Struct 134:845–853

    Article  Google Scholar 

  34. Lin W, Wang Y, Yousefpour K, Park C, Kumar V (2022) Evaluating the lightning strike damage tolerance for CFRP composite laminates containing conductive nanofillers. Appl Compos Mater 29:1537–1554. https://doi.org/10.1007/s10443-022-10028-1

    Article  CAS  Google Scholar 

  35. Spencer R, Wasti S, Kim S, Theodore M, Vaidya U, Hassen AA, Kunc V, Kumar V (2022) Volumetric nondestructive evaluation for damage in carbon fiber reinforced polymer panels subjected to artificial lightning strikes, vol 12047. Proc SPIE, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation XVI, p 1204705. https://doi.org/10.1117/12.2614618

    Book  Google Scholar 

  36. Kumar V, Lin W, Wang Y, Spencer R, Saha S, Park C, Yeole P, Hmeidat NS, Herring C, Rencheck ML, Pokkalla DK, Hassen AA, Theodore M, Vaidya U, Kunc V (2023) Enhanced through-thickness electrical conductivity and lightning strike damage response of interleaved vertically aligned short carbon fiber composites. Compos B Eng 253:110535. https://doi.org/10.1016/j.compositesb.2023.110535

    Article  CAS  Google Scholar 

  37. Sabu M, Bementa E, Jaya Vinse Ruban Y, Ginil Mon S (2020) A novel analysis of the dielectric properties of hybrid epoxy composites. Adv Compos Hybrid Mater 3:325–35. https://doi.org/10.1007/s42114-020-00166-0

    Article  CAS  Google Scholar 

  38. Duan H, Zhuang C, Mei F, Zeng C, Pashameah RA, Huang M, Alzahrani E, Gao J, Han Y, Yu Q, Wang Z (2022) Benzyl(4-fluorophenyl)phenylphosphine oxide-modified epoxy resin with improved flame retardancy and dielectric properties. Adv Compos Hybrid Mater 5:776–787. https://doi.org/10.1007/s42114-022-00491-6

    Article  CAS  Google Scholar 

  39. Jegley DC (2009) Experimental behavior of fatigued single stiffener PRSEUS specimens (Report no. LF99–9677). National Aeronautics and Space Administration. https://ntrs.nasa.gov/citations/20090042823

  40. Bergan A, Bakuckas JG, Lovejoy AE, Jegley DC, Linton KA, Korkosz G, Awerbuch J, Tan TM (2011) Full-scale test and analysis of a PRSEUS fuselage panel to assess damage-containment features. Aircraft Airworthiness and Sustainment Conf. https://ntrs.nasa.gov/citations/20120007108

  41. Velicki A, Yovanof N, Baraja J, Linton K, Li V, Hawley A, Thrash P, DeCoux S, Pickell R (2011) Damage arresting composites for shaped vehicles–Phase II Final Report (Report no. NASA/CR-2011–216880). National Aeronautics and Space Administration. https://ntrs.nasa.gov/citations/20110004279

  42. Velicki A, Jegley DC (2014) PRSEUS structural concept development. 52nd Aerosp Sci Meeting AIAA 2014-0259. https://doi.org/10.2514/6.2014-0259

    Book  Google Scholar 

  43. Dransfield K, Baillie C, Mai Y-W (1994) Improving the delamination resistance of CFRP by stitching—a review. Compos Sci Technol 50:305–317. https://doi.org/10.1016/0266-3538(94)90019-1

    Article  Google Scholar 

  44. Tan KT, Watanabe N, Iwahori Y (2012) Impact damage resistance, response, and mechanisms of laminated composites reinforced by through-thickness stitching. Int J Damage Mech 21:51–80. https://doi.org/10.1177/1056789510397070

    Article  CAS  Google Scholar 

  45. Bergan A, Bakuckas J, Awerbuch J, Tan T-M (2014) Assessment of damage containment features of a full-scale PRSEUS fuselage panel. Compos Struct 113:174–185. https://doi.org/10.1016/j.compstruct.2014.03.011

    Article  Google Scholar 

  46. Mouritz AP, Bannister MK, Falzon PJ, Leong KH (1999) Review of applications for advanced three-dimensional fibre textile composites. Compos A Appl Sci Manuf 30:1445–1461. https://doi.org/10.1016/S1359-835X(99)00034-2

    Article  Google Scholar 

  47. Gnaba I, Legrand X, Wang P, Soulat D (2019) Through-the-thickness reinforcement for composite structures: A review. J Ind Text 49:71–96. https://doi.org/10.1177/1528083718772299

    Article  Google Scholar 

  48. Mouritz AP (2007) Review of z-pinned composite laminates. Compos A Appl Sci Manuf 38:2383–2397. https://doi.org/10.1016/j.compositesa.2007.08.016

    Article  CAS  Google Scholar 

  49. Loh TW, Ladani RB, Ravindran A, Das R, Kandare E, Mouritz AP (2021) Z-Pinned composites with combined delamination toughness and delamination Self-Repair properties. Compos A Appl Sci Manuf 149:106566. https://doi.org/10.1016/j.compositesa.2021.106566

    Article  CAS  Google Scholar 

  50. Ladani RB, Ravindran AR, Wu S, Pingkarawat K, Kinloch AJ, Mouritz AP, Ritchie RO, Wang CH (2016) Multi-scale toughening of fibre composites using carbon nanofibres and z-pins. Compos Sci Technol 131:98–109. https://doi.org/10.1016/j.compscitech.2016.06.005

    Article  CAS  Google Scholar 

  51. Liu L, Zhang T, Wang P, Legrand X, Soulat D (2015) Influence of the tufting yarns on formability of tufted 3-Dimensional composite reinforcement. Compos A Appl Sci Manuf 78:403–411. https://doi.org/10.1016/j.compositesa.2015.07.014

    Article  CAS  Google Scholar 

  52. Wittig J (2002) In-mold-reinforcement of preforms by 3-dimensional tufting. 47th Int SAMPE Symp Exhib, Long Beach, USA, pp 1043–1051

    Google Scholar 

  53. Yeole P, Vaidya U (2021) Hybrid fiber metal composite laminate interlaminar reinforcement through metal interlocks. Adv Compos Hybrid Mater 4:186–194. https://doi.org/10.1007/s42114-020-00186-w

    Article  CAS  Google Scholar 

  54. Lacy Jr. T, Mazzola M, Kluss J, Boushab D, Gharghabi P, Lee J (2017) Resin infused stitched composite development: lightning strike testing of PRSEUS panels (Report no. 118469). Technical report for the Boeing Company

  55. Boushab D (2017) Lightning damage resistance of a full-scale flat PRSEUS panel. Master thesis, Mississippi State University. https://scholarsjunction.msstate.edu/td/2950

  56. Boushab D, Gharghabi P, Lee J, Lacy TE Jr, Pittman CU Jr, Mazzola MS, Velicki A (2021) Lightning arc channel effects on surface damage development on a PRSEUS composite panel: An experimental study. Compos B Eng 224:109217. https://doi.org/10.1016/j.compositesb.2021.109217

    Article  CAS  Google Scholar 

  57. Lee J, Gharghabi P, Boushab D, Ricks TM, Lacy TE Jr, Pittman CU Jr, Mazzola MS, Velicki A (2018) Artificial lightning strike tests on PRSEUS panels. Compos B Eng 154:467–477. https://doi.org/10.1016/j.compositesb.2018.09.016

    Article  CAS  Google Scholar 

  58. Gharghabi P (2018) Experimental and numerical studies of lightning strike induced damage to carbon fiber epoxy composites. Doctoral dissertation, Mississippi State University. https://scholarsjunction.msstate.edu/td/2136

  59. SAE Aerospace Recommended Practice (2013) Aircraft lightning environment and related test waveforms. SAE Standard ARP5412B, Rev. Jan. 2013. https://doi.org/10.4271/ARP5412B

  60. Jegley DC, Przekop A, Lovejoy AE, Rouse M, Wu HYT (2021) Structural response of a stitched composite hybrid wing body center section. J Aircraft 58(3):580–590. https://doi.org/10.2514/1.C035911

    Article  Google Scholar 

  61. Velicki A, Hoffman K, Linton KA, Baraja J, Wu H-YT, Thrash P (2017) Hybrid wing body multi-bay test article analysis and assembly (Report no. NF1676L-27756). National Aeronautics and Space Administration. https://ntrs.nasa.gov/citations/20170009603

  62. Hexcel Corporation (2023) HexTow®AS4 Carbon Fiber. Product Datasheet. https://www.hexcel.com/Resources/DataSheets/Carbon-Fiber

  63. Yl Derseh, Kelem TY (2021) Article review on vectran-super fiber from thermotropic crystals of rigid-rod polymer. J Eng 2021:6646148. https://doi.org/10.1155/2021/6646148

    Article  CAS  Google Scholar 

  64. Kuraray (2023) VectranTM High-strength polyarylate fiber. Product Datasheet. https://www.kuraray.com/products/vectran

  65. Grenoble RW, Johnston WM (2013) Material property characterization of AS4/VRM-34 textile laminates (Report no. NF1676L-16764). National Aeronautics and Space Administration. https://ntrs.nasa.gov/citations/20140004378

  66. Velicki A, Thrash P (2008) Advanced structural concept development using stitched composites. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Struct Dyn Mater Conf AIAA 2008-2329. https://doi.org/10.2514/6.2008-2329

  67. Velicki A (2009) Damage arresting composites for shaped vehicles- Phase 1 final report (Report no. LF99-8391). National Aeronautics and Space Administration. https://ntrs.nasa.gov/citations/20090034167

  68. Zhang X, Dong M, Cai X, Chen D, Xian Y, Zheng X, Guo Z, Algadi H (2023) Progress in machining-induced residual stress and microstructural evolution of inhomogeneous materials and composites. Adv Compos Hybrid Mater 6:122. https://doi.org/10.1007/s42114-023-00698-1

    Article  CAS  Google Scholar 

  69. Entropy Resins (2015) SUPER SAP®CCR System clear, low viscosity liquid epoxy resin for casting, potting, and embedments. Technical data sheet. https://entropyresins.com/product/ccr-clear-casting-epoxy/

  70. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li Y, Sun J, Li S, Tian X, Yao X, Wang B, Zhu Y, Chen J (2022) Experimental study of the damage behaviour of laminated CFRP composites subjected to impulse lightning current. Compos B Eng 239:109949. https://doi.org/10.1016/j.compositesb.2022.109949

    Article  CAS  Google Scholar 

  72. Thilagavathi G, Viju S (2013) Process control in apparel manufacturing. In: Majumdar A, Das A, Alagirusamy R, Kothari VK (eds) Process Control in Textile Manufacturing: Woodhead Publishing. pp 428–73

    Chapter  Google Scholar 

  73. Bhat G (ed) (2016) Structure and properties of high-performance fibers. Woodhead Publishing. https://doi.org/10.1016/C2014-0-03711-2

  74. He Y, Mei M, Yu S, Wei K (2023) Drop-weight impact behaviour of stitched composites: Influence of stitching pattern and stitching space. Compos A Appl Sci Manuf 172:107612. https://doi.org/10.1016/j.compositesa.2023.107612

    Article  Google Scholar 

  75. Mu Y, Yuan P, Wang X, Dong C (2016) Temperature distribution and evolution characteristic in lightning return stroke channel. J Atmos Solar Terr Phys 145:98–105. https://doi.org/10.1016/j.jastp.2016.04.013

    Article  Google Scholar 

  76. Ogasawara T, Hirano Y, Yoshimura A (2010) Coupled thermal–electrical analysis for carbon fiber/epoxy composites exposed to simulated lightning current. Compos A Appl Sci Manuf 41:973–981. https://doi.org/10.1016/j.compositesa.2010.04.001

    Article  CAS  Google Scholar 

  77. Martins RS, Zaepffel C, Chemartin L, Lalande P, Lago F (2019) Characterization of high-current pulsed arcs ranging from 100–250 kA peak. J Phys D Appl Phys 52:185203. https://doi.org/10.1088/1361-6463/ab0190

    Article  CAS  Google Scholar 

  78. Millen S, Kumar V, Murphy A (2023) The influence of carbon fiber composite specimen design parameters on artificial lightning strike current dissipation and material thermal damage. SAE Int J Aerosp 16(2):231–246. https://doi.org/10.4271/01-16-02-0017

    Article  Google Scholar 

  79. Abdelal G, Murphy A (2014) Nonlinear numerical modelling of lightning strike effect on composite panels with temperature dependent material properties. Compos Struct 109:268–278. https://doi.org/10.1016/j.compstruct.2013.11.007

    Article  Google Scholar 

  80. Foster P, Abdelal G, Murphy A (2018) Understanding how arc attachment behaviour influences the prediction of composite specimen thermal loading during an artificial lightning strike test. Compos Struct 192:671–683. https://doi.org/10.1016/j.compstruct.2018.03.039

    Article  Google Scholar 

  81. Kashfipour MA, Mehra N, Zhu J (2018) A review on the role of interface in mechanical, thermal, and electrical properties of polymer composites. Adv Compos Hybrid Mater 1:415–439. https://doi.org/10.1007/s42114-018-0022-9

    Article  Google Scholar 

  82. Bustero I, Gaztelumendi I, Obieta I, Mendizabal MA, Zurutuza A, Ortega A, Alonso B (2020) Free-standing graphene films embedded in epoxy resin with enhanced thermal properties. Adv Compos Hybrid Mater 3:31–40. https://doi.org/10.1007/s42114-020-00136-6

    Article  CAS  Google Scholar 

  83. Sun Y, Fan W, Song C, Gao X, Liu T, Song W, Wang S, Zhou R, Li G, Li S (2022) Effects of stitch yarns on interlaminar shear behavior of three-dimensional stitched carbon fiber epoxy composites at room temperature and high temperature. Adv Compos Hybrid Mater 5:1951–1965. https://doi.org/10.1007/s42114-022-00526-y

    Article  CAS  Google Scholar 

  84. Karami MH, Kalaee M, Khajavi R, Moradi O, Zaarei D (2022) Thermal degradation kinetics of epoxy resin modified with elastomeric nanoparticles. Adv Compos Hybrid Mater 5:390–401. https://doi.org/10.1007/s42114-022-00419-0

    Article  CAS  Google Scholar 

  85. Jones DL, Goyer GG, Plooster MN (1968) Shock wave from a lightning discharge. J Geophys Res 73:3121–3127. https://doi.org/10.1029/jb073i010p03121

    Article  Google Scholar 

  86. Xiong JM, Li L, Dai HY, Wu HB, Peng MY, Lin FC (2018) The development of shock wave overpressure driven by channel expansion of high current impulse discharge arc. Phys Plasmas 25(3):032115. https://doi.org/10.1063/1.5013296

    Article  CAS  Google Scholar 

  87. Alarifi IM (2019) Investigation the conductivity of carbon fiber composites focusing on measurement techniques under dynamic and static loads. J Market Res 8:4863–4893. https://doi.org/10.1016/j.jmrt.2019.08.019

    Article  CAS  Google Scholar 

  88. Foster P, Abdelal G, Murphy A (2019) Quantifying the influence of lightning strike pressure loading on composite specimen damage. Appl Compos Mater 26(1):115–137. https://doi.org/10.1007/s10443-018-9685-1

    Article  Google Scholar 

  89. Lee J, Lacy TE Jr, Pittman CU Jr, Reddy JN (2019) Numerical estimations of lightning-induced mechanical damage in carbon/epoxy composites using shock wave overpressure and equivalent air blast overpressure. Compos Struct 224:111039. https://doi.org/10.1016/j.compstruct.2019.111039

    Article  Google Scholar 

  90. Karch C, Honke R, Steinwandel J, Dittrich KW (2015) Contributions of lightning current pulses to mechanical damage of CFRP structures. IET Conf Proc 1(2):3–4

    Google Scholar 

  91. Martins RS (2016) Experimental and theoretical studies of lightning arcs and their interaction with aeronautical materials. Doctoral dissertation, Universite Paris-Saclay. https://theses.hal.science/tel-01434026/

  92. Bi X, Di H, Liu J, Meng Y, Song Y, Meng W, Qu H, Fang L, Song P, Xu J (2022) A core–shell-structured APP@COFs hybrid for enhanced flame retardancy and mechanical property of epoxy resin (EP). Adv Compos Hybrid Mater 5:1743–1755. https://doi.org/10.1007/s42114-021-00411-0

    Article  CAS  Google Scholar 

  93. Mouritz AP, Gibson AG (2007) Fire properties of polymer composite materials, 1st edn. Springer Netherlands. https://doi.org/10.1007/978-1-4020-5356-6

    Book  Google Scholar 

  94. Righi H, Madabhushi A, Ouidadi H, Boushab D, Lacy T Jr, Kundu S, Pittman C Jr, Priddy MW (2020) Post-crash fire forensic analysis on aerospace composites – Literature review (Report no. DOT/FAA/TC-20/21) Fed Aviation Admin. https://rosap.ntl.bts.gov/view/dot/59914

  95. Mote A, Ouidadi H, Boushab D, Priddy M, Kundu S, Pittman C Jr, Grunlan J, Wang Q, Lacy TE Jr (2021) Post mechanical failure fire damage characterization of graphite/epoxy composites. Am Soc Compos Thirty-Sixth Tech Conf Compos Mater. https://doi.org/10.12783/asc36/35890

  96. Mouritz A, Feih S, Kandare E, Mathys Z, Gibson A, Des Jardin P, Case S, Lattimer B (2009) Review of fire structural modelling of polymer composites. Compos A Appl Sci Manuf 40:1800–1814. https://doi.org/10.1016/j.compositesa.2009.09.001

    Article  CAS  Google Scholar 

  97. Nysten B, Issi JP, Barton R, Boyington DR, Lavin JG (1991) Determination of lattice defects in carbon fibers by means of thermal-conductivity measurements. Phys Rev B 44:2142–2148. https://doi.org/10.1103/PhysRevB.44.2142

    Article  CAS  Google Scholar 

  98. Lavin JG, Boyington D, Lahijani J, Nysten B, Issi J-P (1993) The correlation of thermal conductivity with electrical resistivity in mesophage pitch-based carbon fiber. Carbon 31(6):1001–1002. https://doi.org/10.1016/0008-6223(93)90207-Q

    Article  CAS  Google Scholar 

  99. Newcomb BA (2016) Processing, structure, and properties of carbon fibers. Compos A Appl Sci Manuf 91:262–282. https://doi.org/10.1016/j.compositesa.2016.10.018

    Article  CAS  Google Scholar 

  100. Yang X, Liang C, Ma T, Guo Y, Kong J, Gu J, Chen M, Zhu J (2018) A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater 1:207–230. https://doi.org/10.1007/s42114-018-0031-8

    Article  Google Scholar 

  101. Fourdeux A, Perret R, Ruland W (1971) Electron microscopy of carbon fibers. Proceedings of the first international conference on carbon fibers, plastics Institute, London, p 57

  102. Takaku A, Shioya M (1990) X-ray measurements and the structure of polyacrylonitrile- and pitch-based carbon fibres. J Mater Sci 25:4873–4879. https://doi.org/10.1007/BF01129955

    Article  CAS  Google Scholar 

  103. Wang C, Li K, Li H, Guo L, Jiao G (2008) Influence of CVI treatment of carbon fibers on the electromagnetic interference of CFRC composites. Cement Concr Compos 30:478–485

    Article  CAS  Google Scholar 

  104. Frank E, Steudle LM, Ingildeev D, Spörl JM, Buchmeiser MR (2014) Carbon fibers: Precursor systems, processing, structure, and properties. Angew Chem Int Ed 53:5262–5298. https://doi.org/10.1002/anie.201306129

    Article  CAS  Google Scholar 

  105. Osman A, Elhakeem A, Kaytbay S, Ahmed A (2022) A comprehensive review on the thermal, electrical, and mechanical properties of graphene-based multi-functional epoxy composites. Adv Compos Hybrid Mater 5:547–605. https://doi.org/10.1007/s42114-022-00423-4

    Article  Google Scholar 

  106. Kim HS, Shioya M, Takaku A (1999) Sublimation and deposition of carbon during internal resistance heating of carbon fibers. J Mater Sci 34:4613–4622. https://doi.org/10.1023/A:1004686632539

    Article  CAS  Google Scholar 

  107. Tong Y, Ren Z, Hu Y, Zhang P, Liang X, Chen Y, Yang L, Hua M (2022) Damage behavior and mechanism of C/C-SiC composite ablated under different environments. Adv Compos Hybrid Mater 5:1433–1438. https://doi.org/10.1007/s42114-021-00387-x

    Article  CAS  Google Scholar 

  108. Boushab D, Ouidadi H, Mote A, Priddy M, Kundu S, Pittman CU Jr, Grunlan J, Wang Q, Lacy T Jr (2023) Fire impact on mechanically failed graphite/epoxy composites. Polym Compos 44:2236–2249. https://doi.org/10.1002/pc.27239

    Article  CAS  Google Scholar 

  109. Rozpłoch F, Marciniak W (1986) Radial thermal expansion of carbon fibres. High Temp High Press 18:585–587

    Google Scholar 

  110. Menessier E, Dument JP, Geutte A, Pailler R, Rabardel L, Naslain R (1989) Axial and radial coefficients of thermal expansion of carbon fibers in the 20°–430°C temperature range as derived from the thermal expansion of 1-D-C-SiO2(B2O3) composites. 13th Annu Conf Proc Compos Adv Ceramic Mater Ceramic Eng Sci 10:1426–1439

  111. Ahmed A, Tavakol B, Das R, Joven R, Roozbehjavan P, Minaie B (2012) Study of thermal expansion in carbon fiber-reinforced polymer composites. SAMPE 44th Int Symposium Proc, Charleston SC, pp 22–25

  112. Wang B, Zhu Y, Ming Y, Yao X, Tian X, Ziegmann G, Duan Y, Sun J (2020) Understanding lightning strike induced damage mechanism of carbon fiber reinforced polymer composites: An experimental study. Mater Des 192:108724. https://doi.org/10.1016/j.matdes.2020.108724

    Article  CAS  Google Scholar 

  113. Kumar V, Yeole PS, Hiremath N, Spencer R, Billah KMM, Vaidya U, Hasanian M, Theodore M, Kim S, Hassen AA (2021) Internal arcing and lightning strike damage in short carbon fiber reinforced thermoplastic composites. Compos Sci Technol 201:108525

    Article  CAS  Google Scholar 

  114. Millen SLJ, Lee J (2023) Microscale modelling of lightning damage in fibre-reinforced composites. J Compos Mater 57:1769–1789. https://doi.org/10.1177/00219983231163271

    Article  CAS  Google Scholar 

  115. Kar R (1992) Composite failure analysis handbook part 2-atlas of fractographs (Report no. DOT/FAA/CT-91/23). Northrop Corp. https://apps.dtic.mil/sti/pdfs/ADA249130.pdf

  116. Greenhalgh E (ed) (2009) Failure analysis and fractography of polymer composites. Woodhead Publishing

  117. Herziger G, Bakowsky L, Peschko W, Lindner F (1978) Dynamics of radial arc expansion. Phys Lett A 69:273–275

    Article  Google Scholar 

  118. Tholin F, Chemartin L, Lalande P (2017) Simulation of the lightning arc root interaction with anisotropic materials. ICOLSE, Nagoya, Japan. https://hal.science/hal-02132676

  119. Bergan AC, Bakuckas JG Jr, Lovejoy AE, Jegley DC, Awerbuch J, Tan TM (2012) Assessment of damage containment features of a full-scale PRSEUS fuselage panel through test and teardown. 27th ASC Technical Conference, Arlington, Texas

  120. Zhu Y, Ming Y, Wang B, Duan Y, Xiao H, Zhang C, Sun J, Tian X (2021) Finite element analysis of lightning damage factors based on carbon fiber reinforced polymer. Mater 14:5210

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Lightning strike tests were conducted at the Mississippi State University (MSU) High Voltage Laboratory (HVL). Our appreciation extends to MSU HVL for their assistance in the test setup. In particular, we are grateful for the intellectual contributions of Dr. Mike Mazzola in the initial foundation of this work. We also thank the Marvin B. Dow Stitched Composites Development Center for their support. Lastly, we appreciate the invaluable support and guidance from Alex Velicki and Patrick Trash (Retired Boeing, Huntington Beach, CA).

Funding

This study was funded by the Boeing Company, USA (contract number 1188469).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception, design, and execution of the study. In addition, Dounia Boushab, Aniket Mote, and Khari Harrison performed material preparation, data collection, and analysis. Dounia Boushab wrote the initial draft of the manuscript. Thomas E. Lacy Jr. was the lead researcher responsible for overall funding and completion of the research. All authors have reviewed and approved the manuscript.

Corresponding author

Correspondence to Thomas E. Lacy Jr..

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boushab, D., Mote, A., Harrison, K. et al. Understanding lightning damage formation in a carbon-epoxy Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) composite. Adv Compos Hybrid Mater 7, 58 (2024). https://doi.org/10.1007/s42114-024-00832-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00832-7

Keywords

Navigation