Skip to main content
Log in

An overview of bi-layered niobium pentoxide (Nb2O5)-based photoanodes for dye-sensitized solar cells

  • Review
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Niobium pentoxide (Nb2O5) blocking layers are a considerable and effective photoanode material in the fabrication of highly efficient dye-sensitized solar cells (DSSCs) due to their higher conduction band edge position than that of titania (TiO2) and zinc oxide (ZnO). Therefore, higher open-circuit voltage and more significant electron lifetime can be achieved along with chemical stability, and improved conversion efficiencies. In the present review, the application of Nb2O5 in the fabrication of DSSCs is discussed with detailed examples. The challenges and potential approaches are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Research data policy and data availability statements

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. O’Regan B, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Google Scholar 

  2. Kakiage K, Aoyama Y, Yano T, Oya K, Fujisawa J, Hanaya M (2015) Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chem Commun 51(88):15894–15897

    Google Scholar 

  3. Freitag M, Teuscher J, Saygili Y, Zhang X, Giordano F, Liska P, Hua J, Zakeeruddin SM, Moser J-E, Grätzel M, Hagfeldt A (2017) Dye-sensitized solar cells for efficient power generation under ambient lighting. Nature Photon 11(6):372–378

    Google Scholar 

  4. Li C, Feng M, Guo F, Jiang Q, Li N, Guo Z, Liu X (2022) The evolution of tin-based perovskites solar cells. Eng Sci 19:1–4

    Google Scholar 

  5. Chougale A, Prasad B, Salunkhe S, Shinde D, Kadam V, Jagtap C (2023) Zinc oxide films deposited using the ultrasonic-assisted successive ionic layer adsorption and reaction method for dye sensitized solar cell applications. ES Energy Environ 21:943

    Google Scholar 

  6. Desai UV, Xu C, Wu J, Gao D (2013) Hybrid TiO2–SnO2 nanotube arrays for dye-sensitized solar cells. J Phys Chem C 117(7):3232–3239

    Google Scholar 

  7. Mohite N, Ballal R, Shinde M, Rane S, Mohite KC, Chauhan R (2017) Exploration of Nb2O5 nanorods via hydrothermal routes for dye sensitized solar cells (DSSC) applications. Energy Environ Focus 6(2):179–183

    Google Scholar 

  8. Prasad B, Jagtap C, Kadam V, Jadhar S, Pathan H (2023) Influence of dye loading time on zirconia photoanode for solar cell application. ES Energy Environ 20:875

    Google Scholar 

  9. Rajavedhanayagam J, Murugadoss V, Maurya KD, Angaiah S (2022) Cu2NiSnS4/graphene nanohybrid as a newer counter electrode to boost-up the photoconversion efficiency of dye sensitized solar cell. ES Energy Environ 18:65–74

    Google Scholar 

  10. Sayyed AR, Beedri NI, Kadam VS, Pathan HM (2016) Rose Bengal-sensitized nanocrystalline ceria photoanode for dye-sensitized solar cell application. Bull Mater Sci 39(6):1381–1387

  11. Sayyed SAAR, Beedri NI, Bhujbal PK, Shaikh SF, Pathan HM (2020) Eosin-Y sensitized bi-layered ZnO nanoflower-CeO2 photoanode for dye-sensitized solar cells application. ES Mater Manuf 10(2):45–51

    Google Scholar 

  12. Maheswari D, Venkatachalam P (2014) Enhanced performance of bi-layer Nb2O5 coated TiO2 nanoparticles/nanowires composite photoanode in dye-sensitized solar cells. Photonics Nanostruct Fundam Appl 12(5):515–526

    Google Scholar 

  13. Chen SG, Chappel S, Diamant Y, Zaban A (2001) Preparation of Nb2O5 coated TiO2 nanoporous electrodes and their application in dye-sensitized solar cells. Chem Mater 13(12):4629–4634

    Google Scholar 

  14. Chu L, Liu W, Yu A, Qin Z, Hu R, Shu H, Luo Q-P, Min Y, Yang J, Li X (2017) Effect of TiO2 modification on urchin-like orthorhombic Nb2O5 nanospheres as photoelectrodes in dye-sensitized solar cells. Sol Energy 153:584–589

    Google Scholar 

  15. Le Viet A, Jose R, Reddy MV, Chowdari BVR, Ramakrishna S (2010) Nb2O5 Photoelectrodes for dye-sensitized solar cells: choice of the polymorph. J Phys Chem C 114(49):21795–21800

    Google Scholar 

  16. Abdul Rani R, Zoolfakar AS, Subbiah J, Ou JZ, Kalantar-Zadeh K (2014) Highly ordered anodized Nb2O5 nanochannels for dye-sensitized solar cells. Electrochem Commun 40:20–23

    Google Scholar 

  17. Ghosh R, Brennaman MK, Uher T, Ok M-R, Samulski ET, McNeil LE, Meyer TJ, Lopez R (2011) Nanoforest Nb2O5 photoanodes for dye-sensitized solar cells by pulsed laser deposition. ACS Appl Mater Interfaces 3(10):3929–3935

    Google Scholar 

  18. Sayama K, Sugihara H, Arakawa H (1998) Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem Mater 10(12):3825–3832

    Google Scholar 

  19. Zhang H, Wang Y, Yang D, Li Y, Liu H, Liu P, Wood BJ, Zhao H (2012) Directly hydrothermal growth of single crystal Nb3O7(OH) nanorod film for high performance dye-sensitized solar cells. Adv Mater 24(12):1598–1603

    Google Scholar 

  20. Ou JZ, Rani RA, Ham M-H, Field MR, Zhang Y, Zheng H, Reece P, Zhuiykov S, Sriram S, Bhaskaran M, Kaner RB, Kalantar-Zadeh K (2012) Elevated temperature anodized Nb2O5: a photoanode material with exceptionally large photoconversion efficiencies. ACS Nano 6(5):4045–4053

    Google Scholar 

  21. Jin X, Liu C, Xu J, Wang Q, Chen D (2014) Size-controlled synthesis of mesoporous Nb2O5 microspheres for dye sensitized solar cells. RSC Adv 4(67):35546–35553

    Google Scholar 

  22. Zaban A, Chen SG, Chappel S, Gregg BA (2000) Bilayer nanoporous electrodes for dye sensitized solar cells. Chem Commun 22:2231–2232

    Google Scholar 

  23. Du P, Song L, Xiong J, Yuan Y, Wang L, Xi Z, Jin D, Chen J (2012) TiO2/Nb2O5 core–sheath nanofibers film: co-electrospinning fabrication and its application in dye-sensitized solar cells. Electrochem Commun 25:46–49

    Google Scholar 

  24. Barea E, Xu X, González-Pedro V, Ripollés-Sanchis T, Fabregat-Santiago F, Bisquert J (2011) Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorod based dye sensitized solar cells. Energy Environ Sci 4(9):3414

    Google Scholar 

  25. Sacco A, Di Bella MS, Gerosa M, Chiodoni A, Bianco S, Mosca M, Macaluso R, Calì C, Pirri CF (2015) Enhancement of photoconversion efficiency in dye-sensitized solar cells exploiting pulsed laser deposited niobium pentoxide blocking layers. Thin Solid Films 574:38–42

    Google Scholar 

  26. Lim S-H, Park K-W, Jin MH, Ahn S, Song J, Hong J (2015) Facile preparation of a Nb2O5 blocking layer for dye-sensitized solar cells. J Electroceram 34(2–3):221–227

    Google Scholar 

  27. Xia J, Masaki N, Jiang K, Yanagida S (2007) Sputtered Nb2O5 as a novel blocking layer at conducting glass/TiO2 interfaces in dye-sensitized ionic liquid solar cells. J Phys Chem C 111(22):8092–8097

    Google Scholar 

  28. Yun S, Qin Y, Uhl AR, Vlachopoulos N, Yin M, Li D, Han X, Hagfeldt A (2018) New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy Environ Sci 11(3):476–526

    Google Scholar 

  29. Huber R, Moser J-E, Grätzel M, Wachtveitl J (2002) Real-time observation of photoinduced adiabatic electron transfer in strongly coupled dye/semiconductor colloidal systems with a 6 Fs time constant. J Phys Chem B 106(25):6494–6499

    Google Scholar 

  30. Schnadt J, Brühwiler PA, Patthey L, O’Shea JN, Södergren S, Odelius M, Ahuja R, Karis O, Bässler M, Persson P, Siegbahn H, Lunell S, Mårtensson N (2002) Experimental evidence for sub-3-Fs charge transfer from an aromatic adsorbate to a semiconductor. Nature 418(6898):620–623

    Google Scholar 

  31. Persson P, Lundqvist MJ (2005) Calculated structural and electronic interactions of the ruthenium dye N3 with a titanium dioxide nanocrystal. J Phys Chem B 109(24):11918–11924

    Google Scholar 

  32. Aegerter MA (2001) Sol-gel niobium pentoxide: a promising material for electrochromic coatings, batteries, nanocrystalline solar cells and catalysis. Sol Energy Mater Sol Cells 68(3–4):401–422

    Google Scholar 

  33. Venkataraj S, Drese R, Liesch Ch, Kappertz O, Jayavel R, Wuttig M (2002) Temperature stability of sputtered niobium–oxide films. J Appl Phys 91(8):4863–4871

    Google Scholar 

  34. Greenwood NN, Earnshaw A (1997) Chemistry of the elements, 2nd edn. Butterworth-Heinemann, Oxford; Boston

    Google Scholar 

  35. Wang Y-D, Yang L-F, Zhou Z-L, Li Y-F, Wu X-H (2001) Effects of calcining temperature on lattice constants and gas-sensing properties of Nb2O5. Mater Lett 49(5):277–281

    Google Scholar 

  36. Zhao Y, Zhou X, Ye L, Chi Edman Tsang S (2012) Nanostructured Nb2O5 catalysts. Nano Rev 3(1):17631

  37. Ko EI, Weissman JG (1990) Structures of niobium pentoxide and their implications on chemical behavior. Catal Today 8(1):27–36

    Google Scholar 

  38. Qi S, Zuo R, Liu Y, Wang Y (2013) Synthesis and photocatalytic activity of electrospun niobium oxide nanofibers. Mater Res Bull 48(3):1213–1217

    Google Scholar 

  39. Ikeya T, Senna M (1988) Change in the structure of niobium pentoxide due to mechanical and thermal treatments. J Non-Cryst Solids 105(3):243–250

    Google Scholar 

  40. Schäfer H, Gruehn R, Schulte F (1966) The modifications of niobium pentoxide. Angew Chem Int Ed Engl 5(1):40–52

    Google Scholar 

  41. Rani RA, Zoolfakar AS, Ou JZ, Field MR, Austin M, Kalantar-zadeh K (2013) Nanoporous Nb2O5 hydrogen gas sensor. Sens Actuators B Chem 176:149–156

    Google Scholar 

  42. Carniti P, Gervasini A, Biella S, Auroux A (2005) Intrinsic and effective acidity study of niobic acid and niobium phosphate by a multitechnique approach. Chem Mater 17(24):6128–6136

    Google Scholar 

  43. Mujawar S, Inamdar A, Patil S, Patil P (2006) Electrochromic properties of spray-deposited niobium oxide thin films. Solid State Ionics 177(37–38):3333–3338

    Google Scholar 

  44. Jose R, Thavasi V, Ramakrishna S (2009) Metal oxides for dye-sensitized solar cells. J Am Ceram Soc 92(2):289–301

    Google Scholar 

  45. Ahn K-S, Kang M-S, Lee J-K, Shin B-C, Lee J-W (2006) Enhanced electron diffusion length of mesoporous TiO2 film by using Nb2O5 energy barrier for dye-sensitized solar cells. Appl Phys Lett 89(1):013103

    Google Scholar 

  46. Beedri NI, Sayyed SAAR, Jadkar SR, Pathan HM (2017) Rose Bengal sensitized niobium pentaoxide photoanode for dye sensitized solar cell application. AIP Conf Proc 1832:040022

    Google Scholar 

  47. Beedri NI, Baviskar PK, Supekar AT, Inamuddin, Jadkar SR, Pathan HM (2018) Bilayered ZnO/Nb2O5 photoanode for dye sensitized solar cell. Int J Mod Phys B 32(19):1840046

  48. Ding J, Li Y, Hu H, Bai L, Zhang S, Yuan N (2013) The influence of anatase-rutile mixed phase and ZnO blocking layer on dye-sensitized solar cells based on TiO2 nanofiber photoanodes. Nanoscale Res Lett 8(1):9

    Google Scholar 

  49. Choi H, Nahm C, Kim J, Moon J, Nam S, Jung D-R, Park B (2012) The effect of TiCl4-treated TiO2 compact layer on the performance of dye-sensitized solar cell. Curr Appl Phys 12(3):737–741

    Google Scholar 

  50. Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR (2003) Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. J Am Chem Soc 125(2):475–482

    Google Scholar 

  51. Roh SJ, Mane RS, Min SK, Lee WJ, Lokhande CD, Han SH (2006) Achievement of 4.51% conversion efficiency using ZnO recombination barrier layer in TiO2 based dye-sensitized solar cells. Appl Phys Lett 89(25):253512

  52. Taguchi T, Zhang XT, Sutanto I, Tokuhiro KI, Rao TN, Watanabe H, Nakamori T, Uragami M, Fujishima A (2003) Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film. Chem Commun 19:2480

  53. Kim JY, Lee S, Noh JH, Jung HS, Hong KS (2009) Enhanced photovoltaic properties of overlayer-coated nanocrystalline TiO2 dye-sensitized solar cells (DSSCs). J Electroceram 23(2–4):422–425

    Google Scholar 

  54. Waghmare MA, Beedri NI, Ubale AU, Pathan HM (2019) Fabrication and characterization of Rose Bengal sensitized binary TiO2 -ZrO2 oxides photo-electrode based dye-sensitized solar cell. Eng Sci 6:36–43

  55. Bramhankar TS, Pawar SS, Shaikh JS, Gunge VC, Beedri NI, Baviskar PK, Pathan HM, Patil PS, Kambale RC, Pawar RS (2020) Effect of nickel–zinc co-doped TiO2 blocking layer on performance of DSSCs. J Alloy Compd 817:152810

    Google Scholar 

  56. Waghmare MA, Beedri NI, Baviskar PK, Pathan HM, Ubale AU (2019) Effect of ZrO2 barrier layers on the photovoltaic parameters of Rose Bengal dye-sensitized TiO2 solar cell. J Mater Sci: Mater Electron 30(6):6015–6022

    Google Scholar 

  57. Sayama K, Arakawa H, Domen K (1996) Photocatalytic water splitting on nickel intercalated A4TaxNb6-XO17 (A = K, Rb). Catal Today 28(1–2):175–182

    Google Scholar 

  58. Yu Z, Waclawik ER, Wang Z, Gu X, Yuan Y, Zheng Z (2017) Dual modification of TiNb2O7 with nitrogen dopants and oxygen vacancies for selective aerobic oxidation of benzylamine to imine under green light. J Mater Chem A 5(9):4607–4615

    Google Scholar 

  59. Prado AGS, Bolzon LB, Pedroso CP, Moura AO, Costa LL (2008) Nb2O5 as efficient and recyclable photocatalyst for indigo carmine degradation. Appl Catal B 82(3–4):219–224

    Google Scholar 

  60. Liu X, Yuan R, Liu Y, Zhu S, Lin J, Chen X (2016) Niobium pentoxide nanotube powder for efficient dye-sensitized solar cells. New J Chem 40(7):6276–6280

    Google Scholar 

  61. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Dye-sensitized solar cells. Chem Rev 110(11):6595–6663

    Google Scholar 

  62. Chandiran AK, Abdi-Jalebi M, Nazeeruddin MK, Grätzel M (2014) Analysis of electron transfer properties of ZnO and TiO2 photoanodes for dye-sensitized solar cells. ACS Nano 8(3):2261–2268

    Google Scholar 

  63. Memarian N, Concina I, Braga A, Rozati SM, Vomiero A, Sberveglieri G (2011) Hierarchically assembled ZnO nanocrystallites for high-efficiency dye-sensitized solar cells. Angew Chem Int Ed 50(51):12321–12325

    Google Scholar 

  64. Nowak I, Ziolek M (1999) Niobium compounds: preparation, characterization, and application in heterogeneous catalysis. Chem Rev 99(12):3603–3624

    Google Scholar 

  65. Pfeifer V, Erhart P, Li S, Rachut K, Morasch J, Brötz J, Reckers P, Mayer T, Rühle S, Zaban A, Mora Seró I, Bisquert J, Jaegermann W, Klein A (2013) Energy band alignment between anatase and rutile TiO2. J Phys Chem Lett 4(23):4182–4187

    Google Scholar 

  66. Scanlon DO, Dunnill CW, Buckeridge J, Shevlin SA, Logsdail AJ, Woodley SM, Catlow CR, Powell MJ, Palgrave RG, Parkin IP, Watson GW et al (2013) Band alignment of rutile and anatase TiO2. Nature Mater 12(9):798–801

  67. Park N-G, van de Lagemaat J, Frank AJ (2000) Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J Phys Chem B 104(38):8989–8994

    Google Scholar 

  68. Zhu K, Neale NR, Miedaner A, Frank AJ (2007) Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays. Nano Lett 7(1):69–74

    Google Scholar 

  69. Cameron PJ, Peter LM (2003) Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells. J Phys Chem B 107(51):14394–14400

    Google Scholar 

  70. Góes MS, Joanni E, Muniz EC, Savu R, Habeck TR, Bueno PR, Fabregat-Santiago F (2012) Impedance spectroscopy analysis of the effect of TiO2 blocking layers on the efficiency of dye sensitized solar cells. J Phys Chem C 116(23):12415–12421

    Google Scholar 

  71. Chandiran AK, Nazeeruddin MK, Grätzel M (2014) The role of insulating oxides in blocking the charge carrier recombination in dye-sensitized solar cells. Adv Funct Mater 24(11):1615–1623

    Google Scholar 

  72. Sommeling PM, O’Regan BC, Haswell RR, Smit HJP, Bakker NJ, Smits JJT, Kroon JM, van Roosmalen JAM (2006) Influence of a TiCl4 post-treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. J Phys Chem B 110(39):19191–19197

    Google Scholar 

  73. O'Regan BC, Durrant JR, Sommeling PM, Bakker NJ (2007) Influence of the TiCl4 treatment on nanocrystalline TiO2 films in dye-sensitized solar cells. 2. Charge density, band edge shifts, and quantification of recombination losses at short circuit. J Phys Chem C 111(37):14001–14010

  74. Nang Dinh N, Minh Quyen N, Chung DN, Zikova M, Truong V-V (2011) Highly-efficient electrochromic performance of nanostructured TiO2 films made by doctor blade technique. Sol Energy Mater Sol Cells 95(2):618–623

    Google Scholar 

  75. Abrol SA, Bhargava C, Sharma PK (2021) Fabrication of DSSC using doctor blades method incorporating polymer electrolytes. Mater Res Express 8(4):045010

    Google Scholar 

  76. Bhalekar VP, Baviskar PK, Prasad B, Beedri NI, Kadam VS, Pathan HM (2017) Lead sulphide sensitized ZrO2 photoanode for solar cell application with MoO3 as a counter electrode. Chem Phys Lett 689:15–18

    Google Scholar 

  77. Inamdar Y, Beedri N, Kodam K, Shaikh A, Pathan H (2015) Aggregation of ZnO nanocrystallites using polyol process for dye (Reactive Red) sensitized solar cell: aggregation of ZnO nanocrystallites using polyol. Macromol Symp 347(1):52–57

    Google Scholar 

  78. Beedri NI, Baviskar PK, Bhalekar VP, Jagtap CV, Asiri AM, Jadkar SR, Pathan HM (2018) N3-sensitized TiO2/Nb2O5: a novel bilayer structure for dye-sensitized solar-cell application. Phys Status Solidi A 215(18):1800236

    Google Scholar 

  79. Tang X, Yan X (2017) Dip-coating for fibrous materials: mechanism, methods, and applications. J Sol-Gel Sci Technol 81(2):378–404

    Google Scholar 

  80. Ceratti DR, Louis B, Paquez X, Faustini M, Grosso D (2015) A new dip coating method to obtain large-surface coatings with a minimum of solution. Adv Mater 27(34):4958–4962

  81. Faustini M, Ceratti DR, Louis B, Boudot M, Albouy P-A, Boissière C, Grosso D (2014) Engineering functionality gradients by dip coating process in acceleration mode. ACS Appl Mater Interfaces 6(19):17102–17110

    Google Scholar 

  82. Faustini M, Louis B, Albouy PA, Kuemmel M, Grosso D (2010) Preparation of sol−gel films by dip-coating in extreme conditions. J Phys Chem C 114(17):7637–7645

    Google Scholar 

  83. Chen Y-C, Chang Y-C, Chen C-M (2018) The study of blocking effect of Nb2O5 in dye-sensitized solar cells under low power lighting. J Electrochem Soc 165(7):F409–F416

    Google Scholar 

  84. Moghe AK, Gupta BS (2008) Co-axial electrospinning for nanofiber structures: preparation and applications. Polym Rev 48(2):353–377

    Google Scholar 

  85. Song MY, Kim DK, Ihn KJ, Jo SM, Kim DY (2004) Electrospun TiO2 electrodes for dye-sensitized solar cells. Nanotechnology 15(12):1861–1865

    Google Scholar 

  86. Yip C-T, Guo M, Huang H, Zhou L, Wang Y, Huang C (2012) Open-ended TiO2 nanotubes formed by two-step anodization and their application in dye-sensitized solar cells. Nanoscale 4(2):448–450

    Google Scholar 

  87. Rahane GK, Jathar SB, Rondiya SR, Jadhav YA, Barma SV, Rokade A, Cross RW, Nasane MP, Jadkar V, Dzade NY, Jadkar SR (2011) Photoelectrochemical investigation on the cadmium sulfide (CdS) thin films prepared using spin coating technique. ES Mater Manuf 11:57–64

  88. Sahu N, Parija B, Panigrahi S (2009) Fundamental understanding and modeling of spin coating process: a review. Indian J Phys 83(4):493–502

    Google Scholar 

  89. Sadikin SN, Rahman MY, Umar AA, Salleh MM (2017) Effect of spin-coating cycle on the properties of TiO2 thin film and performance of DSSC. Int J Electrochem Sci 5529–5538

  90. Merazga A, Al-Subai F, Albaradi AM, Badawi A, Jaber AY, Alghamdi AAB (2016) Effect of sol-gel MgO spin-coating on the performance of TiO2-based dye-sensitized solar cells. Mater Sci Semicond Process 41:114–120

    Google Scholar 

  91. Cho T-Y, Ko K-W, Yoon S-G, Sekhon SS, Kang MG, Hong Y-S, Han C-H (2013) Efficiency enhancement of flexible dye-sensitized solar cell with sol–gel formed Nb2O5 blocking layer. Curr Appl Phys 13(7):1391–1396

    Google Scholar 

  92. Mehta VR, Ravindra NM (2020) Screen printing to 3D printing of solar cells—an overview. In TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings; The Minerals, Metals & Materials Society, Ed.; The Minerals, Metals & Materials Series; Springer International Publishing: Cham, pp 1935–1944

  93. Ito S, Mikami Y (2011) Porous carbon layers for counter electrodes in dye-sensitized solar cells: recent advances and a new screen-printing method. Pure Appl Chem 83(11):2089–2106

    Google Scholar 

  94. Somalu MR, Muchtar A, Daud WRW, Brandon NP (2017) Screen-printing inks for the fabrication of solid oxide fuel cell films: a review. Renew Sustain Energy Rev 75:426–439

    Google Scholar 

  95. Nie R, Wang Q, Sun P, Wang R, Yuan Q, Wang X (2019) Pulsed laser deposition of NiSe2 film on carbon nanotubes for high-performance supercapacitor. Eng Sci 6:22–29

    Google Scholar 

  96. Ashfold MNR, Claeyssens F, Fuge GM, Henley SJ (2004) Pulsed laser ablation and deposition of thin films. Chem Soc Rev 33(1):23

    Google Scholar 

  97. Lee S, Noh JH, Han HS, Yim DK, Kim DH, Lee J-K, Kim JY, Jung HS, Hong KS (2009) Nb-doped TiO2: a new compact layer material for TiO2 dye-sensitized solar cells. J Phys Chem C 113(16):6878–6882

    Google Scholar 

  98. Zhou W-Q, Lu Y-M, Chen C-Z, Liu Z-Y, Cai C-B (2011) Effect of Li-doped TiO<SUB>2</SUB> compact layers for dye sensitized solar cells. J Inorg Mater 26(8):819–822

    Google Scholar 

  99. Xia J, Masaki N, Jiang K, Yanagida S (2007) Sputtered Nb2O5 as an effective blocking layer at conducting glass and TiO2 interfaces in ionic liquid-based dye-sensitized solar cells. Chem Commun 2:138–140

    Google Scholar 

  100. Ellis-Gibbings L, Johansson V, Walsh RB, Kloo L, Quinton JS, Andersson GG (2012) Formation of N719 dye multilayers on dye sensitized solar cell photoelectrode surfaces investigated by direct determination of element concentration depth profiles. Langmuir 28(25):9431–9439

    Google Scholar 

  101. Deng K, Cole JM, Rawle JL, Nicklin C, Chen H, Yanguas-Gil A, Elam JW, Stenning GBG (2020) Dye nanoaggregate structures in MK-2, N3, and N749 dye·TiO2 interfaces that represent dye-sensitized solar cell working electrodes. ACS Appl Energy Mater 3(1):900–914

    Google Scholar 

  102. Niedzwiedzki DM (2021) Photophysical properties of N719 and Z907 dyes, benchmark sensitizers for dye-sensitized solar cells, at room and low temperature. Phys Chem Chem Phys 23(10):6182–6189

    Google Scholar 

  103. Kim H-N, Moon JH (2012) Enhanced photovoltaic properties of Nb2O5-coated TiO2 3D ordered porous electrodes in dye-sensitized solar cells. ACS Appl Mater Interfaces 4(11):5821–5825

    Google Scholar 

  104. Wang M, Grätzel C, Zakeeruddin SM, Grätzel M (2012) Recent developments in redox electrolytes for dye-sensitized solar cells. Energy Environ Sci 5(11):9394

    Google Scholar 

  105. Boschloo G, Hagfeldt A (2009) Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells. Acc Chem Res 42(11):1819–1826

    Google Scholar 

  106. Mahadik SA, Pathan HM, Salunke-Gawali S, Butcher RJ (2020) Aminonaphthoquinones as photosensitizers for mesoporous ZnO based dye-sensitized solar cells. J Alloy Compd 845:156279

    Google Scholar 

  107. Jang BY, Park JY, Lee JW, Cheruku R, Kim JH (2016) Enhanced photovoltaic and carrier collection efficiency of dye sensitized solar cell: Nb2O5 coated TiO2 photoanode. Mol Cryst Liq Cryst 635(1):139–147

    Google Scholar 

  108. Listorti A, O’Regan B, Durrant JR (2011) Electron transfer dynamics in dye-sensitized solar cells. Chem Mater 23(15):3381–3399

    Google Scholar 

  109. Suresh S, Deepak TG, Ni C, Sreekala CNO, Satyanarayana M, Nair AS, Pillai VPPM (2016) The role of crystallinity of the Nb2O5 blocking layer on the performance of dye-sensitized solar cells. New J Chem 40(7):6228–6237

    Google Scholar 

  110. Sahoo SS, Chadar D, Murmu M, Banerjee P, Salunke-Gawali S, Butcher RJ (2021) Evaluation of physicochemical properties of provitamin K3 derived benzo[α]phenoxazine as a photosensitizer. Eng Sci 14:94–108

  111. Sahoo SS, Salunke-Gawali S, Kadam VS, Pathan HM (2020) Canna lily red and yellow flower extracts: a new power source to produce photovoltage through dye-sensitized solar cells. Energy Fuels 34(8):9674–9682

    Google Scholar 

  112. Mahadik SA, Patil A, Pathan HM, Salunke-Gawali S, Butcher RJ (2020) Thionaphthoquinones as photosensitizers for TiO2 nanorods and ZnO nanograin based dye-sensitized solar cells: effect of nanostructures on charge transport and photovoltaic performance. Eng Sci 14:46–58

  113. Yang L, Leung WW-F (2011) Application of a bilayer TiO2 nanofiber photoanode for optimization of dye-sensitized solar cells. Adv Mater 23(39):4559–4562

    Google Scholar 

  114. Ogunsolu OO, Murphy IA, Wang JC, Das A, Hanson K (2016) Energy and electron transfer cascade in self-assembled bilayer dye-sensitized solar cells. ACS Appl Mater Interfaces 8(42):28633–28640

    Google Scholar 

  115. Haque SA, Palomares E, Cho BM, Green ANM, Hirata N, Klug DR, Durrant JR (2005) Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy. J Am Chem Soc 127(10):3456–3462

    Google Scholar 

  116. Lai F, Li M, Wang H, Hu H, Wang X, Hou JG, Song Y, Jiang Y (2005) Optical scattering characteristic of annealed niobium oxide films. Thin Solid Films 488(1–2):314–320

    Google Scholar 

  117. Xia J, Masaki N, Jiang K, Yanagida S (2007) Fabrication and characterization of thin Nb2O5 blocking layers for ionic liquid-based dye-sensitized solar cells. J Photochem Photobiol, A 188(1):120–127

    Google Scholar 

  118. Kim YJ, Lee YH, Lee MH, Kim HJ, Pan JH, Lim GI, Choi YS, Kim K, Park N-G, Lee C, Lee WI (2008) Formation of efficient dye-sensitized solar cells by introducing an interfacial layer of long-range ordered mesoporous TiO2 thin film. Langmuir 24(22):13225–13230

    Google Scholar 

  119. Chun JH, Kim JS (2014) Comparison of different structures of niobium oxide blocking layer for dye-sensitized solar cells. J Nanosci Nanotechnol 14(8):6226–6230

    Google Scholar 

  120. Ai X, Guo J, Anderson NA, Lian T (2004) Ultrafast electron transfer from Ru polypyridyl complexes to Nb2O5 nanoporous thin films. J Phys Chem B 108(34):12795–12803

    Google Scholar 

  121. Patrocinio AOT, El-Bachá AS, Paniago EB, Paniago RM, Murakami Iha NY (2012) Influence of the sol-gel pH process and compact film on the efficiency of TiO2-based dye-sensitized solar cells. Int J Photoenergy 2012:1–7

    Google Scholar 

  122. Peter L (2007) Transport, trapping and interfacial transfer of electrons in dye-sensitized nanocrystalline solar cells. J Electroanal Chem 599(2):233–240

    Google Scholar 

  123. Cameron PJ, Peter LM, Hore S (2005) How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells? J Phys Chem B 109(2):930–936

    Google Scholar 

  124. Cameron PJ, Peter LM (2005) How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells? J Phys Chem B 109(15):7392–7398

    Google Scholar 

  125. Woo J-S, Jang G-E (2013) A comparative study on the various blocking layers for performance improvement of dye-sensitized solar cells. Trans Electr Electron Mater 14(6):312–316

    Google Scholar 

  126. Ueno S, Fujihara S (2011) Effect of an Nb2O5 nanolayer coating on ZnO electrodes in dye-sensitized solar cells. Electrochim Acta 56(7):2906–2913

    Google Scholar 

  127. Suresh S, Unni GE, Satyanarayana M, Nair AS, Pillai VPM (2018) Plasmonic Ag@Nb2O5 surface passivation layer on quantum confined SnO2 films for high current dye-sensitized solar cell applications. Electrochim Acta 289:1–12

    Google Scholar 

Download references

Funding

This work was supported by Savitribai Phule Pune University Post Doctoral Fellowship (SPPU-PDF) program (Grant numbers No. SPPU-PDF/ST/PH/2021/0003) to N.I.B. This study is supported via funding from Prince Sattam bin Abdulaziz University (project number PSAU/2023/R/1444).

Author information

Authors and Affiliations

Authors

Contributions

X.G. and N.I.B. had the idea for the review article. M.H.H., S.A.A.R.S., H.M.P., H.H., and H.A. performed the literature search and data analysis. S.S-G. and Y.M. critically revised the work.

Corresponding authors

Correspondence to Sunita Salunke-Gawali or Yong Ma.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, X., Beedri, N.I., Taleb, M.F.A. et al. An overview of bi-layered niobium pentoxide (Nb2O5)-based photoanodes for dye-sensitized solar cells. Adv Compos Hybrid Mater 6, 213 (2023). https://doi.org/10.1007/s42114-023-00791-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00791-5

Keywords

Navigation