Skip to main content

Advertisement

Log in

Hierarchical copper oxide@nickel-cobalt layered double hydroxide for efficient 5-hydroxymethylfurfural electro-oxidation in alkaline seawater

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Developing efficient electrocatalysts for biomass electro-oxidation in alkaline seawater is of great significance but remains less explored. Herein, we reported a hierarchical structure consisting of nickel-cobalt layered double hydroxide nanosheets and copper oxide nanowires (CuO@NiCo-LDH), which was favorable for increasing active sites and facilitating electron transfer during 5-hydroxymethylfurfural oxidation (HMFOR). As-designed CuO@NiCo-LDH catalyst achieved a high yield of 2,5-furandicarboxylic acid (FDCA, 89%) and 82% faradaic efficiency (F.E.). It also showed a large current density of 133.4 mA cm−2 at 1.4 V vs. RHE, outperforming most of the previously reported Ni/Co-based HMFOR electrocatalysts. More importantly, it also showed an outstanding HMFOR performance in alkaline seawater, suggesting great promise in practical electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Zhang Y, Fu C, Weng S, Lv H, Li P, Deng S, Hao W (2022) Construction of “environmental-friendly” CuBx@PU self-supporting electrode toward efficient seawater electrolysis. Green Chem 24:5918–5929. https://doi.org/10.1039/d2gc01819e

    Article  CAS  Google Scholar 

  2. Zhao J, Bao K, Xie M, Wei D, Yang K, Zhang X, Zhang C, Wang Z, Yang X (2022) Two-dimensional ultrathin networked CoP derived from Co(OH)2 as efficient electrocatalyst for hydrogen evolution. Adv Compos Hybrid Mater 5:2421–2428. https://doi.org/10.1007/s42114-022-00455-w

    Article  CAS  Google Scholar 

  3. Yu Z, Li Y, Martin-Diaconescu V, Simonelli L, Ruiz Esquius J, Amorim I, Araujo A, Meng L, Faria JL, Liu L (2022) Highly efficient and stable saline water electrolysis enabled by self-supported nickel-iron phosphosulfide nanotubes with heterointerfaces and under-coordinated metal active sites. Adv Funct Mater 32:2206138. https://doi.org/10.1002/adfm.202206138

    Article  CAS  Google Scholar 

  4. Sarwar S, Lin M-C, Ahasan MR, Wang Y, Wang R, Zhang X (2022) Direct growth of cobalt-doped molybdenum disulfide on graphene nanohybrids through microwave irradiation with enhanced electrocatalytic properties for hydrogen evolution reaction. Adv Compos Hybrid Mater 5:2339–2352. https://doi.org/10.1007/s42114-022-00424-3

    Article  CAS  Google Scholar 

  5. You H, Wu D, Si D, Cao M, Sun F, Zhang H, Wang H, Liu T-F, Cao R (2022) Monolayer niIr-layered double hydroxide as a long-lived efficient oxygen evolution catalyst for seawater splitting. J Am Chem Soc 144:9254–9263. https://doi.org/10.1021/jacs.2c00242

    Article  CAS  Google Scholar 

  6. Wan S, Wang X, Zhang G, Wang Y, Chen J, Li Q, Zhang Y, Chen L, Wang X, Meng G, Jiang K (2022) Electrochemically activated Ni-Fe oxyhydroxide for mimic saline water oxidation. ACS Sustainable Chem Eng 10:11232–11241. https://doi.org/10.1021/acssuschemeng.2c02923

    Article  CAS  Google Scholar 

  7. Mao Q, Deng K, Yu H, Xu Y, Wang Z, Li X, Wang L, Wang H (2022) In situ reconstruction of partially hydroxylated porous Rh metallene for ethylene glycol-assisted seawater splitting. Adv Funct Mater 32:2201081. https://doi.org/10.1002/adfm.202201081

    Article  CAS  Google Scholar 

  8. Liu J, Duan S, Shi H, Wang T, Yang X, Huang Y, Wu G, Li Q (2022) Rationally designing efficient electrocatalysts for direct seawater splitting: challenges, achievements, and promises. Angew Chem Int Ed Engl 61:e202210753. https://doi.org/10.1002/anie.202210753

  9. Zhou Z, Pei Z, Wei L, Zhao S, Jian X, Chen Y (2020) Electrocatalytic hydrogen evolution under neutral pH conditions: current understandings, recent advances, and future prospects. Energy Environ Sci 13:3185–3206. https://doi.org/10.1039/d0ee01856b

    Article  CAS  Google Scholar 

  10. Winter LR, Cooper NJ, Lee B, Patel SK, Wang L, Elimelech M (2022) Mining nontraditional water sources for a distributed hydrogen economy. Environ Sci Technol 56:10577–10585. https://doi.org/10.1021/acs.est.2c02439

    Article  CAS  Google Scholar 

  11. Du X, Tan M, Wei T, Kobayashi H, Song J, Peng Z, Zhu H, Jin Z, Li R, Liu W (2023) Highly efficient and robust nickel-iron bifunctional catalyst coupling selective methanol oxidation and freshwater/seawater hydrogen evolution via CO-free pathway. Chem Eng J 452:139404. https://doi.org/10.1016/j.cej.2022.139404

  12. Liu X, Mao H, Liu G, Yu Q, Wu S, Li B, Zhou G, Li Z, Wang L (2023) Metal doping and hetero-engineering of Cu-doped CoFe/Co embedded in N-doped carbon for improving trifunctional electrocatalytic activity in alkaline seawater. Chem Eng J 451:138699. https://doi.org/10.1016/j.cej.2022.138699

  13. Yu Q, Liu X, Liu G, Wang X, Li Z, Li B, Wu Z, Wang L (2022) Constructing three-phase heterojunction with 1D/3D hierarchical structure as efficient trifunctional electrocatalyst in alkaline seawater. Adv Funct Mater 32:2205767. https://doi.org/10.1002/adfm.202205767

    Article  CAS  Google Scholar 

  14. Deng K, Mao Q, Wang W, Wang P, Wang Z, Xu Y, Li X, Wang H, Wang L (2022) Defect-rich low-crystalline Rh metallene for efficient chlorine-free H2 production by hydrazine-assisted seawater splitting. Appl Catal B 310:121338. https://doi.org/10.1016/j.apcatb.2022.121338

  15. Tan L, Yu J, Wang C, Wang H, Liu X, Gao H, Xin L, Liu D, Hou W, Zhan T (2022) Partial sulfidation strategy to NiFe-LDH@FeNi2S4 heterostructure enable high-performance water/seawater oxidation. Adv Funct Mater 32:2200951. https://doi.org/10.1002/adfm.202200951

    Article  CAS  Google Scholar 

  16. Ning M, Zhang F, Wu L, Xing X, Wang D, Song S, Zhou Q, Luo Y, Bao J, Chen S, Ren Z (2022) Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction. Energy Environ Sci 15:3945–3957. https://doi.org/10.1039/d2ee01094a

    Article  CAS  Google Scholar 

  17. Khatun S, Roy P (2023) Mott-Schottky heterojunction of Se/NiSe2 as bifunctional electrocatalyst for energy efficient hydrogen production via urea assisted seawater electrolysis. J Colloid Interface Sci 630:844–854. https://doi.org/10.1016/j.jcis.2022.10.149

    Article  CAS  Google Scholar 

  18. Zhu W, Fu X, Wang A, Ren M, Wei Z, Tang C, Sun X, Wang J (2022) Energy-efficient electrolytic H2 production and high-value added H2-acid-base co-electrosynthesis modes enabled by a Ni2P catalyst in a diaphragm cell. Appl Catal B 317:121726. https://doi.org/10.1016/j.apcatb.2022.121726

  19. Guo L, Chi J, Zhu J, Cui T, Lai J, Wang L (2023) Dual-doping NiMoO4 with multi-channel structure enable urea-assisted energy-saving H2 production at large current density in alkaline seawater. Appl Catal B 320:121977. https://doi.org/10.1016/j.apcatb.2022.121977

  20. Shao D, Wang Q, Yao X, Zhou Y, Yu X-Y (2022) Phase-engineering of nickel hydroxide in the Ni/Ni(OH)2 interface for efficient hydrogen evolution and hydrazine-assisted water splitting in seawater. J Mater Chem A 10:21848–21855. https://doi.org/10.1039/d2ta06481b

    Article  CAS  Google Scholar 

  21. Lyu C, Cheng J, Wu K, Wu J, Wang N, Guo Z, Hu P, Lau W-M, Zheng J (2022) Interfacial electronic structure modulation of CoP nanowires with FeP nanosheets for enhanced hydrogen evolution under alkaline water/seawater electrolytes. Appl Catal B 317:121799. https://doi.org/10.1016/j.apcatb.2022.121799

  22. Liu S, Ren S, Gao R-T, Liu X, Wang L (2022) Atomically embedded Ag on transition metal hydroxides triggers the lattice oxygen towards sustained seawater electrolysis. Nano Energy 98:107212. https://doi.org/10.1016/j.nanoen.2022.107212

  23. Liu J, Liu X, Shi H, Luo J, Wang L, Liang J, Li S, Yang L-M, Wang T, Huang Y, Li Q (2022) Breaking the scaling relations of oxygen evolution reaction on amorphous NiFeP nanostructures with enhanced activity for overall seawater splitting. Appl Catal B 302:120862. https://doi.org/10.1016/j.apcatb.2021.120862

  24. Xu Y, Wang C, Huang Y, Fu J (2021) Recent advances in electrocatalysts for neutral and large-current-density water electrolysis. Nano Energy 80:105545. https://doi.org/10.1016/j.nanoen.2020.105545

  25. Liu Y, Liu X, Wang X, Ning H, Yang T, Yu J, Kumar A, Luo Y, Wang H, Wang L, Lee J, Jadhav AR, Hu H, Wu M, Kim MG, Lee H (2021) Unraveling the synergy of chemical hydroxylation and the physical heterointerface upon improving the hydrogen evolution kinetics. ACS Nano 15:15017–15026. https://doi.org/10.1021/acsnano.1c05324

    Article  CAS  Google Scholar 

  26. Ge R, Li J, Duan H (2022) Recent advances in non-noble electrocatalysts for oxidative valorization of biomass derivatives. Sci China Mater 65:3273–3301. https://doi.org/10.1007/s40843-022-2076-y

    Article  CAS  Google Scholar 

  27. Eqi M, Shi C, Xie J, Kang F, Qi H, Tan X, Huang Z, Liu J, Guo J (2022) Synergetic effect of Ni-Au bimetal nanoparticles on urchin-like TiO2 for hydrogen and arabinose co-production by glucose photoreforming. Adv Compos Hybrid Mater 6:5. https://doi.org/10.1007/s42114-022-00580-6

    Article  CAS  Google Scholar 

  28. Zhou P, Lv X, Tao S, Wu J, Wang H, Wei X, Wang T, Zhou B, Lu Y, Frauenheim T, Fu X, Wang S, Zou Y (2022) Heterogeneous interface enhanced adsorption of organic and hydroxyl for biomass electrooxidation. Adv Mater 34:2204089. https://doi.org/10.1002/adma.202204089

    Article  CAS  Google Scholar 

  29. Zhou Z, Xie Y-n, Sun L, Wang Z, Wang W, Jiang L, Tao X, Li L, Li X-H, Zhao G (2022) Strain-induced in situ formation of NiOOH species on Co Co bond for selective electrooxidation of 5-hydroxymethylfurfural and efficient hydrogen production. Appl Catal B 305:121072. https://doi.org/10.1016/j.apcatb.2022.121072

  30. Lu Y, Liu T, Dong CL, Yang C, Zhou L, Huang YC, Li Y, Zhou B, Zou Y, Wang S (2022) Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass. Adv Mater 34:2107185. https://doi.org/10.1002/adma.202107185

    Article  CAS  Google Scholar 

  31. Zhu B, Chen C, Huai L, Zhou Z, Wang L, Zhang J (2021) 2,5-Bis(hydroxymethyl)furan: a new alternative to HMF for simultaneously electrocatalytic production of FDCA and H2 over CoOOH/Ni electrodes. Appl Catal B 297:120396. https://doi.org/10.1016/j.apcatb.2021.120396

  32. Ge R, Wang Y, Li Z, Xu M, Xu S M, Zhou H, Ji K, Chen F, Zhou J, Duan H (2022) Selective electrooxidation of biomass-derived alcohols to aldehydes in a neutral medium: promoted water dissociation over a nickel-oxide-supported ruthenium single-atom catalyst. Angew Chem Int Ed Engl 61:e202200211. https://doi.org/10.1002/anie.202200211

  33. Huang X, Akdim O, Douthwaite M, Wang K, Zhao L, Lewis RJ, Pattisson S, Daniel IT, Miedziak PJ, Shaw G, Morgan DJ, Althahban SM, Davies TE, He Q, Wang F, Fu J, Bethell D, McIntosh S, Kiely CJ, Hutchings GJ (2022) Au-Pd separation enhances bimetallic catalysis of alcohol oxidation. Nature 603:271-+. https://doi.org/10.1038/s41586-022-04397-7

  34. He X, Mo Z, Liu H, Wang C (2023) Interface engineering of the NiO/CeO2@NF heterostructure to boost the electro-oxidation of 5-hydroxymethylfurfural. Dalton Trans 52:9456–9464. https://doi.org/10.1039/d3dt01259j

    Article  CAS  Google Scholar 

  35. Yuan G, Wan T, BaQais A, Mu Y, Cui D, Amin M A, Li X, Xu B B, Zhu X, Algadi H, Li H, Wasnik P, Lu N, Guo Z, Wei H, Cheng B (2023) Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212. https://doi.org/10.1016/j.carbon.2023.118101

  36. Fan‡ B, Wang‡ H, Han X, Deng Y, Hu W (2022) Single atoms (Pt, Ir and Rh) anchored on activated NiCo LDH for alkaline hydrogen evolution reaction. Chem Commun 58:8254–8257. https://doi.org/10.1039/d2cc02732a

    Article  CAS  Google Scholar 

  37. Lin Z, Li X, Zhang H, Xu BB, Wasnik P, Li H, Singh MV, Ma Y, Li T, Guo Z (2023) Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg Chem Front 10:4358–4392. https://doi.org/10.1039/d3qi00819c

    Article  CAS  Google Scholar 

  38. Guo L, Zhang Y, Zheng J, Shang L, Shi Y, Wu Q, Liu X, Wang Y, Shi L, Shao Q (2021) Synthesis and characterization of ZnNiCr-layered double hydroxides with high adsorption activities for Cr(VI). Adv Compos Hybrid Mater 4:819–829. https://doi.org/10.1007/s42114-021-00260-x

    Article  CAS  Google Scholar 

  39. Cao Y, Wang T, Li X, Zhang L, Luo Y, Zhang F, Asiri AM, Hu J, Liu Q, Sun X (2021) A hierarchical CuO@NiCo layered double hydroxide core–shell nanoarray as an efficient electrocatalyst for the oxygen evolution reaction. Inorg Chem Front 8:3049–3054. https://doi.org/10.1039/d1qi00124h

    Article  CAS  Google Scholar 

  40. Bi J, Xu H, Wang W, Sang T, Jiang A, Hao J, Li Z (2023) Cu2P7-CoP heterostructure nanosheets enable high-performance of 5-hydroxymethylfurfural electrooxidation. Chem - Eur J e202300973. https://doi.org/10.1002/chem.202300973

  41. Zhang Y, Liu L, Zhao L, Hou C, Huang M, Algadi H, Li D, Xia Q, Wang J, Zhou Z, Han X, Long Y, Li Y, Zhang Z, Liu Y (2022) Sandwich-like CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries. Adv Compos Hybrid Mater 5:2601–2610. https://doi.org/10.1007/s42114-022-00535-x

    Article  CAS  Google Scholar 

  42. Yang G, Jiao Y, Yan H, Xie Y, Wu A, Dong X, Guo D, Tian C, Fu H (2020) Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv Mater 32:2000455. https://doi.org/10.1002/adma.202000455

    Article  CAS  Google Scholar 

  43. Cai X, Shen X, Ma L, Ji Z, Xu C, Yuan A (2015) Solvothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on RGO sheets for high performance supercapacitor. Chem Eng J 268:251–259. https://doi.org/10.1016/j.cej.2015.01.072

    Article  CAS  Google Scholar 

  44. Ghosh TK, Singh DL, Mishra V, Sahoo MK, Rao RG (2022) Design of ZIF-67 nanoflake derived NiCo-LDH/rGO hybrid nanostructures for aqueous symmetric supercapattery application under alkaline condition. Nanotechnology 33:415402. https://doi.org/10.1088/1361-6528/ac7fa4

  45. Fang J, Xuan Y (2017) Investigation of optical absorption and photothermal conversion characteristics of binary CuO/ZnO nanofluids. RSC Adv 7:56023–56033. https://doi.org/10.1039/c7ra12022b

    Article  CAS  Google Scholar 

  46. Zhang B, Yang Z, Yan C, Xue Z, Mu T (2023) Operando forming of lattice vacancy defect in ultrathin crumpled NiVW-layered metal hydroxides nanosheets for valorization of biomass. Small 19:e2207236. https://doi.org/10.1002/smll.202207236

  47. Zhao y, Sun M, Wen Q, Wang S, Han S, Huang L, Cheng G, Liu Y, Yu L (2022) Homologous NiCoP@NiFeP heterojunction array achieving high-current hydrogen evolution for alkaline anion exchange membrane electrolyzers. J Mater Chem A 10:10209–10218. https://doi.org/10.1039/d2ta01233b

    Article  CAS  Google Scholar 

  48. Xing J, Du J, Zhang X, Shao Y, Zhang T, Xu C (2017) A Ni-P@NiCo LDH core–shell nanorod-decorated nickel foam with enhanced areal specific capacitance for high-performance supercapacitors. Dalton Trans 46:10064–10072. https://doi.org/10.1039/c7dt01910f

    Article  CAS  Google Scholar 

  49. Lai C, Guo Y, Zhao H, Song H, Qu X, Huang M, Hong SW, Lee K (2022) High-performance double “ion-buffering reservoirs” of asymmetric supercapacitors enabled by battery-type hierarchical porous sandwich-like Co3O4 and 3D graphene aerogels. Adv Compos Hybrid Mater 5:2557–2574. https://doi.org/10.1007/s42114-022-00532-0

    Article  CAS  Google Scholar 

  50. Zheng J, Zhang Y, Jing C, Zhang H, Shao Q, Ge R (2022) A visible-light active p-n heterojunction ZnO/Co3O4 composites supported on Ni foam as photoanode for enhanced photoelectrocatalytic removal of methylene blue. Adv Compos Hybrid Mater 5:2406–2420. https://doi.org/10.1007/s42114-022-00448-9

    Article  CAS  Google Scholar 

  51. Pang X, Zhao H, Huang Y, Liu Y, Bai H, Fan W, Shi W (2022) In situ electrochemical reconstitution of CF-CuO/CeO2 for efficient active species generation. Inorg Chem 61:8940–8954. https://doi.org/10.1021/acs.inorgchem.2c01338

    Article  CAS  Google Scholar 

  52. Li X, Kong W, Qin X, Qu F, Lu L (2020) Self-powered cathodic photoelectrochemical aptasensor based on in situ-synthesized CuO-Cu2O nanowire array for detecting prostate-specific antigen. Microchim Acta 187:325. https://doi.org/10.1007/s00604-020-04277-9

    Article  CAS  Google Scholar 

  53. Li W, Li F, Yang H, Wu X, Zhang P, Shan Y, Sun L (2019) A bio-inspired coordination polymer as outstanding water oxidation catalyst via second coordination sphere engineering. Nat Commun 10:5074. https://doi.org/10.1038/s41467-019-13052-1

    Article  CAS  Google Scholar 

  54. McCrory CC, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135:16977–16987. https://doi.org/10.1021/ja407115p

    Article  CAS  Google Scholar 

  55. Jin H, Wang X, Tang C, Vasileff A, Li L, Slattery A, Qiao SZ (2021) Stable and highly efficient hydrogen evolution from seawater enabled by an unsaturated nickel surface nitride. Adv Mater 33:e2007508. https://doi.org/10.1002/adma.202007508

Download references

Funding

This work was supported by the Natural Science Foundation of Shandong Province (ZR2023QB215).

Author information

Authors and Affiliations

Authors

Contributions

Min Ma and Ruixiang Ge proposed the research project and guided the whole experiments. Hassan Algadi and Qian Shao gave important advices on the research project and property analysis. Sijia Guo conducted the syntheses and characterizations of catalyst, and wrote the manuscript. Min Ma wrote and revised the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Min Ma or Ruixiang Ge.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2577 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, S., Ma, M., Ge, R. et al. Hierarchical copper oxide@nickel-cobalt layered double hydroxide for efficient 5-hydroxymethylfurfural electro-oxidation in alkaline seawater. Adv Compos Hybrid Mater 6, 158 (2023). https://doi.org/10.1007/s42114-023-00730-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00730-4

Keywords

Navigation