Skip to main content

Advertisement

Log in

Regulating the properties of activated carbon for supercapacitors: impact of particle size and degree of aromatization of hydrochar

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Hydrochar (HC), obtained by the hydrothermal carbonization (HTC) of biomass, is an excellent precursor for preparing activated carbon (AC). However, the effects of the intrinsic properties of HC on the microstructure and electrochemical properties of AC are largely unknown. This study investigates the impact of particle size and the degree of aromatization of in-situ HC on the microstructure and electrochemical properties of AC. Our results show that a large particle size and a high degree of aromatization help protect the HC from overactivation by ZnCl2, resulting in an large specific surface area (SSA > 2000 m2/g) and high mesopore to micropore volume ratio value ( Vmes/Vmic > 0.3) of the AC. Electrochemical performance measurements show a maximum specific capacitance of 218 F/g at 0.5 A/g was achieved in all samples where the AC (AC180-10 h) was prepared by activating HC180-10 h with a large size, a high degree of aromatization, and abundant surface oxygen-containing functional groups. After AC180-10 h was assembled into a supercapacitor, the specific capacitance of AC180-10 h still reached 158 F/g at 0.5 A/g, and it showed excellent cycling stability. This study advances the understanding of the impact of HC particle size and degree of aromatization on AC properties, providing new insights into tailoring HC qualities so that improving improve the properties of AC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wang ZM, Yang M, Xie XX, Yu CY, Jiang QL, Huang MN, Algadi H, Guo ZH, Zhang H (2022) Applications of machine learning in perovskite materials. Adv Compos Hybrid Mater 5(4):2700–2720. https://doi.org/10.1007/s42114-022-00560-w

    Article  Google Scholar 

  2. Hu X, Wu H, Liu S, Gong S, Du Y, Li X, Lu X, Qu J (2022) Fabrication of organic shape-stabilized phase change material and its energy storage applications. Eng Sci 17:1–27. https://doi.org/10.30919/es8d474

  3. Cao Y, Weng MM, Mahmoud MHH, Elnaggar AY, Zhang L, El Azab IH, Chen Y, Huang MN, Huang JT, Sheng XX (2022) Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv Compos Hybrid Mater 5(2):1253–1267. https://doi.org/10.1007/s42114-022-00504-4

    Article  CAS  Google Scholar 

  4. Hou C, Wang B, Murugadoss V, Vupputuri S, Chao Y, Guo Z, Wang C, Du W (2020) Recent advances in Co3O4 as anode materials for high-performance lithium-ion batteries. Eng Sci 11:19–30. https://doi.org/10.30919/es8d1128

  5. Zhang YM, Liu LY, Zhao LL, Hou CX, Huang MN, Algadi H, Li DY, Xia Q, Wang J, Zhou ZR, Han X, Long YX, Li YB, Zhang ZD, Liu Y (2022) Sandwich-like CoMoP2/MoP heterostructures coupling N, P co-doped carbon nanosheets as advanced anodes for high-performance lithium-ion batteries. Adv Compos Hybrid Mater 5(3):2601–2610. https://doi.org/10.1007/s42114-022-00535-x

    Article  CAS  Google Scholar 

  6. Dang CC, Mu Q, Xie XB, Sun XQ, Yang XY, Zhang YP, Maganti S, Huang MN, Jiang QL, Seok I, Du W, Hou CX (2022) Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review. Adv Compos Hybrid Mater 5(2):606–626. https://doi.org/10.1007/s42114-022-00500-8

    Article  Google Scholar 

  7. Bi JX, Du ZZ, Sun JM, Liu YH, Wang K, Du HF, Ai W, Huang W (2023) On the road to the frontiers of lithium-ion batteries: a review and outlook of graphene anodes. Adv Mater. https://doi.org/10.1002/adma.202210734

  8. Ma YP, Xie XB, Yang WY, Yu ZP, Sun XQ, Zhang YP, Yang XY, Kimura H, Hou CX, Guo ZH, Du W (2021) Recent advances in transition metal oxides with different dimensions as electrodes for high-performance supercapacitors. Adv Compos Hybrid Mater 4(4):906–924. https://doi.org/10.1007/s42114-021-00358-2

    Article  CAS  Google Scholar 

  9. Zhao YL, Liu F, Zhu KJ, Maganti S, Zhao ZY, Bai PK (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater 5(2):1537–1547. https://doi.org/10.1007/s42114-022-00430-5

    Article  CAS  Google Scholar 

  10. Lai CW, Guo Y, Zhao HH, Song HX, Qu XX, Huang MN, Hong SW, Lee K (2022) High-performance double “ion-buffering reservoirs” of asymmetric supercapacitors enabled by battery-type hierarchical porous sandwich-like Co3O4 and 3D graphene aerogels. Adv Compos Hybrid Mater 5(3):2557–2574. https://doi.org/10.1007/s42114-022-00532-0

    Article  CAS  Google Scholar 

  11. Lehmann J, Cowie A, Masiello CA, Kammann C, Woolf D, Amonette JE, Cayuela ML, Camps-Arbestain M, Whitman T (2021) Biochar in climate change mitigation. Nat Geosci 14(12):883. https://doi.org/10.1038/s41561-021-00852-8

  12. Altwala A, Mokaya R (2020) Predictable and targeted activation of biomass to carbons with high surface area density and enhanced methane storage capacity. Energy Environ Sci 13(9):2967–2978. https://doi.org/10.1039/d0ee01340d

    Article  CAS  Google Scholar 

  13. Sevilla M, Mokaya R (2014) Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy Environ Sci 7(4):1250–1280. https://doi.org/10.1039/c3ee43525c

    Article  CAS  Google Scholar 

  14. Wei L, Yushin G (2012) Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy 1(4):552–565. https://doi.org/10.1016/j.nanoen.2012.05.002

    Article  CAS  Google Scholar 

  15. Shao YL, El-Kady MF, Sun JY, Li YG, Zhang QH, Zhu MF, Wang HZ, Dunn B, Kaner RB (2018) Design and mechanisms of asymmetric supercapacitors. Chem Rev 118(18):9233–9280. https://doi.org/10.1021/acs.chemrev.8b00252

    Article  CAS  Google Scholar 

  16. Tian WJ, Zhang HY, Duan XG, Sun HQ, Shao GS, Wang SB (2020) Porous carbons: structure-oriented design and versatile applications. Adv Funct Mater 30(17). https://doi.org/10.1002/adfm.201909265

  17. Xu T, Du HS, Liu HY, Liu W, Zhang XY, Si CL, Liu PW, Zhang K (2021) Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv Mater 33(48). https://doi.org/10.1002/adma.202101368

  18. Ahmed FBM, Khalafallah D, Zhi MJ, Hong ZL (2022) Porous nanoframes of sulfurized NiAl layered double hydroxides and ternary bismuth cerium sulfide for supercapacitor electrodes. Adv Compos Hybrid Mater 5(3):2500–2514. https://doi.org/10.1007/s42114-022-00496-1

    Article  CAS  Google Scholar 

  19. Liu W, Liu K, Du HS, Zheng T, Zhang N, Xu T, Pang B, Zhang XY, Si CL, Zhang K (2022) Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett 14 (1). https://doi.org/10.1007/s40820-022-00849-x

  20. Zhang M, Du HS, Liu K, Nie SX, Xu T, Zhang XY, Si CL (2021) Fabrication and applications of cellulose-based nanogenerators. Adv Compos Hybrid Mater 4(4):865–884. https://doi.org/10.1007/s42114-021-00312-2

    Article  CAS  Google Scholar 

  21. Waribam P, Ngo SD, Tran TTV, Kongparakul S, Reubroycharoen P, Chanlek N, Wei L, Zhang HB, Guan GQ, Samart C (2020) Waste biomass valorization through production of xylose-based porous carbon microspheres for supercapacitor applications. Waste Manage 105:492–500. https://doi.org/10.1016/j.wasman.2020.02.042

    Article  CAS  Google Scholar 

  22. Falco C, Marco-Lozar JP, Salinas-Torres D, Morallon E, Cazorla-Amoros D, Titirici MM, Lozano-Castello D (2013) Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature. Carbon 62:346–355. https://doi.org/10.1016/j.carbon.2013.06.017

    Article  CAS  Google Scholar 

  23. Li B, Dai F, Xiao QF, Yang L, Shen JM, Zhang CM, Cai M (2016) Nitrogen-doped activated carbon for a high energy hybrid supercapacitor. Energy Environ Sci 9(1):102–106. https://doi.org/10.1039/c5ee03149d

    Article  CAS  Google Scholar 

  24. Sun Z, Qu KQ, Li JH, Yang S, Yuan BN, Huang ZH, Guo ZH (2021) Self-template biomass-derived nitrogen and oxygen co-doped porous carbon for symmetrical supercapacitor and dye adsorption. Adv Compos Hybrid Mater 4(4):1413–1424. https://doi.org/10.1007/s42114-021-00352-8

    Article  CAS  Google Scholar 

  25. Peng J, Kang X, Zhao S, Zhao P, Ragauskas AJ, Si C, Xu T, Song X (2022) Growth mechanism of glucose-based hydrochar under the effects of acid and temperature regulation. J Colloid Interface Sci 630(Pt A):654–665. https://doi.org/10.1016/j.jcis.2022.10.044

    Article  CAS  Google Scholar 

  26. Xue YC, Zhou H, Wang KY, Zhu HX, Zhuang LZ, Xu Z, He H (2022) Tailoring of an ultralow temperature adaptive cellulose nanofiber-based flexible zinc-air battery with long cycle life. J Mater Chem A 10(42):22730–22741. https://doi.org/10.1039/d2ta06782j

    Article  CAS  Google Scholar 

  27. Hayashi J, Kazehaya A, Muroyama K, Watkinson AP (2000) Preparation of activated carbon from lignin by chemical activation. Carbon 38(13):1873–1878. https://doi.org/10.1016/s0008-6223(00)00027-0

    Article  CAS  Google Scholar 

  28. Liu ZD, Duan CP, Dou SM, Yuan QY, Xu J, Liu WD, Chen YN (2022) Ultrafast porous carbon activation promises high-energy density supercapacitors. Small 18(23). https://doi.org/10.1002/smll.202200954

  29. Liu K, Liu W, Li W, Duan YX, Zhou KY, Zhang S, Ni SZ, Xu T, Du HS, Si CL (2022) Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv Compos Hybrid Mater 5(2):1078–1089. https://doi.org/10.1007/s42114-022-00425-2

    Article  CAS  Google Scholar 

  30. Hou CX, Yang WY, Kimura H, Xie XB, Zhang XY, Sun XQ, Yu ZP, Yang XY, Zhang YP, Wang B, Xu BB, Sridhar D, Algadi H, Guo ZH, Du W (2023) Boosted lithium storage performance by local build-in electric field derived by oxygen vacancies in 3D holey N-doped carbon structure decorated with molybdenum dioxide. J Mater Sci Technol 142:185–195. https://doi.org/10.1016/j.jmst.2022.10.007

    Article  Google Scholar 

  31. Yang WY, Peng DN, Kimura H, Zhang XY, Sun XQ, Pashameah RA, Alzahrani E, Wang B, Guo ZH, Du W, Hou CAX (2022) Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv Compos Hybrid Mater 5(4):3146–3157. https://doi.org/10.1007/s42114-022-00556-6

    Article  CAS  Google Scholar 

  32. Brown AB, Tompsett GA, Partopour B, Deskins NA, Timko MT (2020) Hydrochar structural determination from artifact-free Raman analysis. Carbon 167:378–387. https://doi.org/10.1016/j.carbon.2020.06.021

    Article  CAS  Google Scholar 

  33. Xu MM, Huang YQ, Chen RW, Huang QB, Yang Y, Zhong LX, Ren JL, Wang XH (2021) Green conversion of Ganoderma lucidum residues to electrode materials for supercapacitors. Adv Compos Hybrid Mater 4(4):1270–1280. https://doi.org/10.1007/s42114-021-00271-8

    Article  CAS  Google Scholar 

  34. Qing Y, Jiang YT, Lin H, Wang LX, Liu AJ, Cao YL, Sheng R, Guo Y, Fan CW, Zhang S, Jia DZ, Fan ZJ (2019) Boosting the supercapacitor performance of activated carbon by constructing overall conductive networks using graphene quantum dots. J Mater Chem A 7(11):6021–6027. https://doi.org/10.1039/c8ta11620b

    Article  CAS  Google Scholar 

  35. Wang L, Peng MK, Chen JR, Hu T, Yuan K, Chen YW (2022) Eliminating the micropore confinement effect of carbonaceous electrodes for promoting Zn-Ion storage capability. Adv Mater 34(39). https://doi.org/10.1002/adma.202203744

  36. Kang XH, Peng J, Ragauskas AJ, Ren XF, Si CL, Wang SF, Song XP (2022) Competitive effects of glucan's main hydrolysates on biochar formation: a combined experiment and density functional theory analysis. Bioresour Technol 359. https://doi.org/10.1016/j.biortech.2022.127427

  37. Zhao SY, Chen XR, Zhang CX, Zhao PT, Ragauskas AJ, Song XP (2021) Fluorescence enhancement of lignin-based carbon quantum dots by concentration-dependent and electron-donating substituent synergy and their cell imaging applications. ACS Appl Mater Interfaces 13(51):61565–61577. https://doi.org/10.1021/acsami.1c20648

    Article  CAS  Google Scholar 

  38. Liu HY, Xu T, Cai CY, Liu K, Liu W, Zhang M, Du HS, Si CL, Zhang K (2022) Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv Funct Mater 32(26). https://doi.org/10.1002/adfm.202113082

  39. Sun L, Gong YN, Li DL, Pan CX (2022) Biomass-derived porous carbon materials: synthesis, designing, and applications for supercapacitors. Green Chem 24(10):3864–3894. https://doi.org/10.1039/d2gc00099g

    Article  CAS  Google Scholar 

  40. Liu HY, Xu T, Liang QD, Zhao QS, Zhao DW, Si CL (2022) Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv Compos Hybrid Mater 5(2):1168–1179. https://doi.org/10.1007/s42114-022-00427-0

    Article  CAS  Google Scholar 

  41. Li W, Wang GH, Sui WJ, Xu T, Li ZF, Parvez AM, Si CL (2022) Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes. Carbon 196:819–827. https://doi.org/10.1016/j.carbon.2022.05.053

    Article  CAS  Google Scholar 

  42. Zhang XY, Wang XY, Jiang LL, Wu H, Wu C, Su JC (2012) Effect of aqueous electrolytes on the electrochemical behaviors of supercapacitors based on hierarchically porous carbons. J Power Sources 216:290–296. https://doi.org/10.1016/j.jpowsour.2012.05.090

    Article  CAS  Google Scholar 

  43. Wen J, Fu QS, Wu WY, Gao H, Zhang XT, Wang B (2019) Understanding the different diffusion mechanisms of hydrated protons and potassium ions in titanium carbide MXene. ACS Appl Mater Interfaces 11(7):7087–7095. https://doi.org/10.1021/acsami.8b21117

    Article  CAS  Google Scholar 

  44. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9(15):1774–1785. https://doi.org/10.1039/b618139m

    Article  CAS  Google Scholar 

  45. Yin J, Zhang WL, Alhebshi NA, Salah N, Alshareef HN (2020) Synthesis strategies of porous carbon for supercapacitor applications. Small Methods 4(3). https://doi.org/10.1002/smtd.201900853

  46. Liu SM, Liang YR, Zhou W, Hu WQ, Dong HW, Zheng MT, Hu H, Lei BF, Xiao Y, Liu YL (2018) Large-scale synthesis of porous carbon via one-step CuCl2 activation of rape pollen for high-performance supercapacitors. J Mater Chem A 6(25):12046–12055. https://doi.org/10.1039/c8ta02838a

    Article  CAS  Google Scholar 

  47. Zhang DB, Zhang MY, Wang JW, Sun HL, Liu H, Mi LW, Liu CT, Shen CY (2022) Impedance response behavior and mechanism study of axon-like ionic conductive cellulose-based hydrogel strain sensor. Adv Compos Hybrid Mater 5(3):1812–1820. https://doi.org/10.1007/s42114-022-00437-y

    Article  CAS  Google Scholar 

  48. Xiao KX, Liu H, Li Y, Yi LL, Zhang XJ, Hu HY, Yao H (2018) Correlations between hydrochar properties and chemical constitution of orange peel waste during hydrothermal carbonization. Bioresour Technol 265:432–436. https://doi.org/10.1016/j.biortech.2018.06.014

    Article  CAS  Google Scholar 

  49. Baccile N, Laurent G, Babonneau F, Fayon F, Titirici MM, Antonietti M (2009) Structural characterization of hydrothermal carbon spheres by advanced solid-state MAS C-13 NMR investigations. J Phys Chem C 113(22):9644–9654. https://doi.org/10.1021/jp901582x

    Article  CAS  Google Scholar 

  50. Zhu XQ, Xue Y, Li X, Zhang Z, Sun W, Ashida R, Miura K, Yao H (2016) Mechanism study of degradative solvent extraction of biomass. Fuel 165:10–18. https://doi.org/10.1016/j.fuel.2015.10.021

    Article  CAS  Google Scholar 

  51. Calucci L, Rasse DP, Forte C (2013) Solid-state nuclear magnetic resonance characterization of chars obtained from hydrothermal carbonization of corncob and miscanthus. Energy Fuels 27(1):303–309. https://doi.org/10.1021/ef3017128

    Article  CAS  Google Scholar 

  52. Li ZL, Zhao HL, Lv PP, Zhang ZJ, Zhang Y, Du ZH, Teng YQ, Zhao LN, Zhu ZM (2018) Watermelon-like structured SiOx-TiO2@C nanocomposite as a high-performance lithium-ion battery anode. Adv Funct Mater 28(31). https://doi.org/10.1002/adfm.201605711

  53. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Poschl U (2005) Raman micro spectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43(8):1731–1742. https://doi.org/10.1016/j.carbon.2005.02.018

    Article  CAS  Google Scholar 

  54. Zhao SY, Kang XH, Fan HH, Si CL, Song XP (2022) Preparation of zinc-doped bagasse-based activated carbon multilayer composite and its electrochemical performance as a supercapacitor. Microporous Mesoporous Mat 329. https://doi.org/10.1016/j.micromeso.2021.111518

  55. Mu Q, Liu RL, Kimura H, Li JC, Jiang HY, Zhang XY, Yu ZP, Sun XQ, Algadi H, Guo ZH, Du W, Hou CX (2023) Supramolecular self-assembly synthesis of hemoglobin-like amorphous CoP@N, P-doped carbon composites enable ultralong stable cycling under high-current density for lithium-ion battery anodes. Adv Compos Hybrid Mater 6(1). https://doi.org/10.1007/s42114-022-00607-y

  56. Li FS, Li QY, Kimura H, Xie XB, Zhang XY, Wu NN, Sun XQ, Bin XuB, Algadi H, Pashameah RA, Alanazih AK, Alzahrani E, Li HD, Du W, Guo ZH, Hou CX (2023) Morphology controllable urchin-shaped bimetallic nickel-cobalt oxide/carbon composites with enhanced electromagnetic wave absorption performance. J Mater Sci Technol 148:250–259. https://doi.org/10.1016/j.jmst.2022.12.003

    Article  Google Scholar 

  57. Ai J, Ma H, Tobler DJ, Mangayayam MC, Lu CY, van den Berg FWJ, Yin WZ, Hansen HCB (2020) Bone char mediated dechlorination of trichloroethylene by green rust. Environ Sci Technol 54(6):3643–3652. https://doi.org/10.1021/acs.est.9b07069

    Article  CAS  Google Scholar 

  58. Jin ZL, Xiao SJ, Dong HR, Xiao JY, Tian R, Chen J, Li YJ, Li L (2022) Adsorption and catalytic degradation of organic contaminants by biochar: overlooked role of biochar's particle size. J Hazard Mater 422. https://doi.org/10.1016/j.jhazmat.2021.126928

  59. Huang YL, Zhao Y, Gong QM, Weng MY, Bai JF, Liu X, Jiang YQ, Wang JJ, Wang DZ, Shao Y, Zhao M, Zhuang DM, Liang J (2017) Experimental and correlative analyses of the ageing mechanism of activated carbon based supercapacitor. Electrochim Acta 228:214–225. https://doi.org/10.1016/j.electacta.2017.01.059

    Article  CAS  Google Scholar 

  60. Erradi A, Touhtouh S, El Fallah J, El Ballouti A, Hajjaji A (2021) Performance evaluation of supercapacitors based on activated carbons and investigation of the impact of aging on the electrodes. J Energy Storage 40. https://doi.org/10.1016/j.est.2021.102836

  61. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854. https://doi.org/10.1038/nmat2297

    Article  CAS  Google Scholar 

  62. El Brouji E, Briat O, Vinassa JM, Bertrand N, Woirgard E (2009) Impact of calendar life and cycling ageing on supercapacitor performance. IEEE Trans Veh Technol 58(8):3917–3929. https://doi.org/10.1109/tvt.2009.2028431

    Article  Google Scholar 

  63. Bourdo S, Li ZR, Biris AS, Watanabe F, Viswanathan T, Pavel I (2008) Structural, electrical, and thermal Behavior of graphite-polyaniline composites with increased crystallinity. Adv Funct Mater 18(3):432–440. https://doi.org/10.1002/adfm.200700425

    Article  CAS  Google Scholar 

  64. Kim DW, Kil HS, Nakabayashi K, Yoon SH, Miyawaki J (2017) Structural elucidation of physical and chemical activation mechanisms based on the microdomain structure model. Carbon 114:98–105. https://doi.org/10.1016/j.carbon.2016.11.082

    Article  CAS  Google Scholar 

  65. Zhang Y, Song XL, Xu Y, Shen HJ, Kong XD, Xu HM (2019) Utilization of wheat bran for producing activated carbon with high specific surface area via NaOH activation using industrial furnace. J Clean Prod 210:366–375. https://doi.org/10.1016/j.jclepro.2018.11.041

    Article  CAS  Google Scholar 

  66. Heidarinejad Z, Dehghani MH, Heidari M, Javedan G, Ali I, Sillanpaa M (2020) Methods for preparation and activation of activated carbon: a review. Environ Chem Lett 18(2):393–415. https://doi.org/10.1007/s10311-019-00955-0

    Article  CAS  Google Scholar 

Download references

Funding

The project was sponsored by the National Key Research and Development Program of China (Grant No. 2021YFE0114400), National Natural Science Foundation of China (Grant No. 22268007), Natural Science Foundation of Guangxi Province, China (Grant No. 2021GXNSFDA196006), Innovation Project of Guangxi Graduate Education (Grant No. YCBZ2023020), and the Foundation of Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University (Grant Nos. 2021KF20, 2021KF02, 2021KF32, and 2021KF34). The AJR efforts were provided by the University of Tennessee.

Author information

Authors and Affiliations

Authors

Contributions

Xueping Song supervised the project. Jian Peng designed the experiments. Xiheng Kang, Siyu Zhao, and Yongjun Yin performed the experiments. All authors discussed experiments and results. Jian Peng wrote the manuscript. Peitao Zhao, Arthur J. Ragauskas and Chuanling Si revised the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Xueping Song.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 677 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, J., Kang, X., Zhao, S. et al. Regulating the properties of activated carbon for supercapacitors: impact of particle size and degree of aromatization of hydrochar. Adv Compos Hybrid Mater 6, 107 (2023). https://doi.org/10.1007/s42114-023-00682-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-023-00682-9

Keywords

Navigation