Skip to main content
Log in

Tailored composition of low emissivity top layer for lightweight visible light-infrared-radar multiband compatible stealth coating

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Here, we proposed a strategy of reducing the areal density and thickness of compatible stealth coatings by introducing silicone resin-based infrared stealth (IRS) coatings as the absorption peak modulation layer of a dual-layer absorber. The joint infrared-visual camouflage performance was achieved by employing Al powder and modified Cr2O3 (M-Cr2O3) hybrid filler in IRS coating. When the mass ratio of the above two pigments is 2:1, the coating exhibits a low emissivity value of 0.525 with green grass color. The radar wave-transmitting property and dielectric property of the infrared coating can be regulated by the mass ratio of Al powder to M-Cr2O3. By coating the Al/M-Cr2O3-filled layer on FeSiAl-based microwave absorption (MA) layer, enhanced MA performance was achieved due to the synergistic effect between the two layers. Outstandingly, introducing the Al/M-Cr2O3-filled IRS coating suppressed the thermal radiation of the double-layered structure by 41% and reduced the total thickness and areal density by 16% and 18.6%, respectively. The properties promote the service reliability and practicability of compatible stealth coatings on equipment.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhou Z, Huang J (2021) Mixed design of radar/infrared stealth for advanced fighter intake and exhaust system. Aerosp Sci Technol 110(4):106490

    Article  Google Scholar 

  2. Cheng Z, Zhao F, Wang X et al (2020) Coaxial electrospinning fabrication and radar-infrared compatible stealth properties of Zn0.96Co0.04O nanotubes. J Alloy Compd 835:155368. https://doi.org/10.1016/j.jallcom.2020.155368

  3. Zhao H, Wang F, Cui L et al (2021) Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nano-Micro Lett 13(1) https://doi.org/10.1007/s40820-021-00734-z

  4. Shi H, Zhao H, Liu B et al (2021) Multifunctional flame-retardant melamine-based hybrid foam for infrared stealth, thermal insulation, and electromagnetic interference shielding. Acs Appl Mater Inter 13(22):26505–26514. https://doi.org/10.1021/acsami.1c07363

    Article  CAS  Google Scholar 

  5. Su K, Wang Y, Hu K et al (2021) Ultralight and high-strength SiCnw@SiC foam with highly efficient microwave absorption and heat insulation properties. Acs Appl Mater Inter 13(18):22017–22030. https://doi.org/10.1021/acsami.1c03543

    Article  CAS  Google Scholar 

  6. Li J, Xu Z, Li T et al (2022) Multifunctional antimony tin oxide/reduced graphene oxide aerogels with wideband microwave absorption and low infrared emissivity. Compos B Eng 231:109565. https://doi.org/10.1016/j.compositesb.2021.109565

    Article  CAS  Google Scholar 

  7. Shi Y, Ding X, Pan K et al (2022) A novel multi-dimensional structure of graphene-decorated composite foam for excellent stealth performance in microwave and infrared frequency bands. J Mater Chem A 10(14):7705–7717. https://doi.org/10.1039/D2TA00030J

    Article  CAS  Google Scholar 

  8. Gu W, Tan J, Chen J et al (2020) Multifunctional bulk hybrid foam for infrared stealth, thermal insulation, and microwave absorption. ACS Appl Mater Interfaces 12(25):28727–28737. https://doi.org/10.1021/acsami.0c09202

    Article  CAS  Google Scholar 

  9. Chai X, Zhu D, Liu Y et al (2021) Silver-modified chromium(III) oxide as multi-band compatible stealth materials for visual/ infrared stealth and radar wave transmission. Compos Sci Technol 216:109038. https://doi.org/10.1016/j.compscitech.2021.109038

    Article  CAS  Google Scholar 

  10. Lv H, Ji G, Li X et al (2015) Microwave absorbing properties and enhanced infrared reflectance of FeAl mixture synthesized by two-step ball-milling method. J Magn Magn Mater 374:225–229. https://doi.org/10.1016/j.jmmm.2014.08.006

    Article  CAS  Google Scholar 

  11. Zhu A, Xing H, Fan Q et al (2021) Conductive polyaniline coated on aluminum substrate as bi-functional materials with high-performance microwave absorption and low infrared emissivity. Synthetic Met 271:116640. https://doi.org/10.1016/j.synthmet.2020.116640

    Article  CAS  Google Scholar 

  12. Ma Y, Shi L, Wang J et al (2021) A transparent and flexible metasurface with both low infrared emission and broadband microwave absorption. J Mater Sci: Mater Electron 32(2):2001–2010. https://doi.org/10.1007/s10854-020-04967-3

    Article  CAS  Google Scholar 

  13. Gao Z, Fan Q, Xu C et al (2021) Compatible stealth design of infrared and radar based on plasmonic absorption structure. Opt Express 29(18):28767. https://doi.org/10.1364/OE.432703

    Article  CAS  Google Scholar 

  14. Joy V, Dileep A, Abhilash PV et al (2021) Metasurfaces for stealth applications: a comprehensive review. J Electron Mater 50(6):3129–3148. https://doi.org/10.1007/s11664-021-08927-3

    Article  CAS  Google Scholar 

  15. Zhang C, Wu X, Huang C et al (2019) Flexible and transparent microwave–infrared bistealth structure. Adv Mater Technol-Us 4(8):1900063. https://doi.org/10.1002/admt.201900063

    Article  CAS  Google Scholar 

  16. Guohua X, Zuoguang Z, Ruibin W (2005) Matching performance among visible and near infrared coating, low infrared emitting coating and microwave absorbing coating. J Wuhan Univ Technol Mater Sci Edit 20(4):55–59. https://doi.org/10.1007/BF02841283

  17. Chu H, Zhang Z, Liu Y et al (2016) Silver particles modified carbon nanotube paper/glassfiber reinforced polymer composite material for high temperature infrared stealth camouflage. Carbon 98:557–566. https://doi.org/10.1016/j.carbon.2015.11.036

    Article  CAS  Google Scholar 

  18. Liu Y, Li Y, Luo F et al (2017) Electromagnetic and microwave absorption properties of flaky FeCrAl particles. J Mater Sci: Mater Electron 28(9):6619–6627. https://doi.org/10.1007/s10854-017-6352-5

    Article  CAS  Google Scholar 

  19. Liu Y, Si J, Li Y et al (2017) Electromagnetic and microwave absorption properties of hybrid FeCrAl/Ti3SiC2 composite in X-band. J Electron Mater 46(8):4981–4988. https://doi.org/10.1007/s11664-017-5500-2

    Article  CAS  Google Scholar 

  20. Zhang Y, Zhou T (2017) Structure and electromagnetic properties of FeSiAl particles coated by MgO. J Magn Magn Mater 426:680–684. https://doi.org/10.1016/j.jmmm.2016.10.144

    Article  CAS  Google Scholar 

  21. Fan Q, Zhang L, Xing H et al (2020) Microwave absorption and infrared stealth performance of reduced graphene oxide-wrapped Al flake. J Mater Sci: Mater Electron 31(4):3005–3016. https://doi.org/10.1007/s10854-019-02844-2

    Article  CAS  Google Scholar 

  22. Chen L, Ren Z, Liu X et al (2021) Infrared–visible compatible stealth based on Al-SiO2 nanoparticle composite film. Opt Commun 482:126608. https://doi.org/10.1016/j.optcom.2020.126608

    Article  CAS  Google Scholar 

  23. Liu Y, Xie J, Luo M et al (2017) The synthesis and characterization of Al/Co3O4 magnetic composite pigments with low infrared emissivity and low lightness. Infrared Phys Techn 83:88–93. https://doi.org/10.1016/j.infrared.2017.04.014

    Article  CAS  Google Scholar 

  24. Huang X, Rao W, Chen Y et al (2016) Infrared emitting properties and environmental stability performance of aluminum/polymer composite coating. J Mater Sci: Mater Electron 27(6):5543–5548. https://doi.org/10.1007/s10854-016-4458-9

    Article  CAS  Google Scholar 

  25. Qi L, Weng X, Yuan L et al (2020) Improved thermal expansion performance of aluminum/polysiloxane/glass coatings with low infrared emissivity by zinc powder. Infrared Phys Techn 110:103458. https://doi.org/10.1016/j.infrared.2020.103458

    Article  CAS  Google Scholar 

  26. Zhang Y, Qin Y, Quan B et al (2021) Simultaneous low reflection in near-infrared range and low emission in long-wave infrared properties of Al/Bi2O3 composites. Ceram Int 47(22):31180–31186. https://doi.org/10.1016/j.ceramint.2021.07.293

    Article  CAS  Google Scholar 

  27. Tan W, Wang L, Yu F et al (2014) Preparation and characterization of a greenish yellow lackluster coating with low infrared emissivity based on Prussian blue modified aluminum. Prog Org Coat 77(7):1163–1168. https://doi.org/10.1016/j.porgcoat.2014.04.003

    Article  CAS  Google Scholar 

  28. Yu H, Xu G, Shen X et al (2009) Low infrared emissivity of polyurethane/Cu composite coatings. Appl Surf Sci 255(12):6077–6081. https://doi.org/10.1016/j.apsusc.2009.01.019

    Article  CAS  Google Scholar 

  29. Li X, Li M, Li X et al (2022) Low infrared emissivity and strong stealth of Ti-based MXenes. Research 1–7. https://doi.org/10.34133/2022/9892628

  30. Hu C, Xu G, Shen X et al (2010) The epoxy-siloxane/Al composite coatings with low infrared emissivity for high temperature applications. Appl Surf Sci 256(11):3459–3463. https://doi.org/10.1016/j.apsusc.2009.12.053

    Article  CAS  Google Scholar 

  31. Liu Z, Zhang J, Tang Y et al (2021) Optimization of PBO fibers/cyanate ester wave-transparent laminated composites via incorporation of a fluoride-containing linear interfacial compatibilizer. Compos Sci Technol 210:108838. https://doi.org/10.1016/j.compscitech.2021.108838

    Article  CAS  Google Scholar 

  32. Guo J, Chen Z, El-Bahy ZM et al (2022) Tunable negative dielectric properties of magnetic CoFe2O4/graphite-polypyrrole metacomposites. Advanced Composites and Hybrid Materials 5(2):899–906. https://doi.org/10.1007/s42114-022-00485-4

    Article  CAS  Google Scholar 

  33. Ji C, Liu Y, Xu J et al (2022) Enhanced microwave absorption properties of biomass-derived carbon decorated with transition metal alloy at improved graphitization degree. J Alloy Compd 890:161834. https://doi.org/10.1016/j.jallcom.2021.161834

    Article  CAS  Google Scholar 

  34. Guo J, Li X, Chen Z et al (2022) Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72. https://doi.org/10.1016/j.jmst.2021.08.049

    Article  Google Scholar 

  35. Kong L, Qi J, Li M et al (2021) Electromagnetic wave absorption properties of Ti3C2Tx nanosheets modified with in-situ growth carbon nanotubes. Carbon 183:322–331. https://doi.org/10.1016/j.carbon.2021.07.018

    Article  CAS  Google Scholar 

  36. Duan Y, Pang H, Wen X et al (2021) Microwave absorption performance of FeCoNiAlCr0.9 alloy powders by adjusting the amount of process control agent. J Mater Sci Technol 77:209–216. https://doi.org/10.1016/j.jmst.2020.09.049

    Article  CAS  Google Scholar 

  37. Tian H, Liu H, Cheng H (2014) A thin radar-infrared stealth-compatible structure: design, fabrication, and characterization. Chinese Phys B 23(2):25201. https://doi.org/10.1088/1674-1056/23/2/025201

    Article  CAS  Google Scholar 

  38. Zhong S, Jiang W, Xu P et al (2017) A radar-infrared bi-stealth structure based on metasurfaces. Appl Phys Lett 110(6):63502. https://doi.org/10.1063/1.4975781

    Article  CAS  Google Scholar 

  39. Huang L, Duan Y, Liu J et al (2021) Bionic composite metamaterials for harvesting of microwave and integration of multifunctionality. Compos Sci Technol 204:108640. https://doi.org/10.1016/j.compscitech.2020.108640

    Article  CAS  Google Scholar 

  40. Luo H, Zhang X, Huang S et al (2019) Infrared emissivity and microwave transmission behavior of flaky aluminum functionalized pyramidal-frustum shaped periodic structure. Infrared Phys Techn 99:123–128. https://doi.org/10.1016/j.infrared.2019.04.013

    Article  CAS  Google Scholar 

  41. Yu Q, Zeng Y, Ma G (2021) A radar-infrared compatible broadband absorbing surface: design and analysis. Chinese Phys B 30(7):78402. https://doi.org/10.1088/1674-1056/abea7f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the National Natural Science Foundation of China (31800802); Innovative Talent Promotion Program-Youth Science and Technology Emerging Project (2021KJXX-101); and Fundamental Research Project of National Defense (2021-JCJQ-ZD-046-00).

Funding

This work is supported by the National Natural Science Foundation of China (31800802); Innovative Talent Promotion Program-Youth Science and Technology Emerging Project (2021KJXX-101); and Fundamental Research Project of National Defense (2021-JCJQ-ZD-046–00).

Author information

Authors and Affiliations

Authors

Contributions

Xia Chai has made substantial contributions to the conception, design, and analysis of the work. Dongmei Zhu, Qiang Chen, Yuchang Qing, Fa Luo, and Xianhu Liu have provided substantial constructive suggestions and revised the work for important intellectual content. Kai Cao have made contributions to the interpretation of data. Zhibin Huang and Peng Li have provided operation knowledge. All authors reviewed the manuscript.

Corresponding author

Correspondence to Qiang Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1693 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chai, X., Zhu, D., Chen, Q. et al. Tailored composition of low emissivity top layer for lightweight visible light-infrared-radar multiband compatible stealth coating. Adv Compos Hybrid Mater 5, 3094–3103 (2022). https://doi.org/10.1007/s42114-022-00563-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00563-7

Keywords

Navigation