Skip to main content
Log in

Highly sensitive and selective surface molecularly imprinted polymer electrochemical sensor prepared by Au and MXene modified glassy carbon electrode for efficient detection of tetrabromobisphenol A in water

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Tetrabromobisphenol A (TBBPA) is a widely used brominated flame retardants (BFRs) to impede or inhibit flammability. It has been detected in aquatic food webs, soils, and sediments from diverse electronic waste (e-waste) recycling sites. A selective and sensitive electrochemical sensor which was constructed by dropping molecularly imprinted polymer onto MXene and Au nanoparticle modified glassy carbon electrode was used to detect TBBPA. The specific recognition site provided by molecularly imprinted polymer can ensure the accuracy of detection results. Excellent conductivity of MXene and Au nanoparticles can effectively enhance the responsive signal of the sensors. Fe3O4 nanoparticles were firstly fixed on graphene sheets via the solvothermal method, and the azido was introduced by nucleophilic addition between carbonyl and amino after dopamine was self-polymerized onto the surface of Fe3O4 nanoparticles. Molecularly imprinted polymer was prepared by RAFT polymerization after the RAFT agent was introduced by the click chemistry between azido and alkynyl. The concentration of TBBPA was detected by differential pulse voltammetry. The influences of accumulation time and pH value were investigated. The as-prepared molecular imprinting sensor exhibited a good linear relationship to the concentration of TBBPA ranging from 0.05 to 10 nM with a detection limit of 0.0144 nM. The proposed sensor was also successfully used to detect TBBPA in water samples and the recovery values for the standards added were 97.1–106%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xiong P, Yan X, Zhu Q, Qu G, Shi J, Liao C, Jiang G (2019) A review of environmental occurrence, fate, and toxicity of novel brominated flame retardants. Environ Sci Technol 53:13551–13569

    Article  CAS  Google Scholar 

  2. Wu S, Zhu Z, Chen J, Wu M, Qiu L (2019) Transcriptomic analyses of human bronchial epithelial cells BEAS-2B exposed to brominated flame retardant (tetrabromobisphenol A). Environ Toxicol 34:742–752

    Article  CAS  Google Scholar 

  3. Wu Y, Chen C, Zhou Q, Li QX, Yuan Y, Tong Y, Wang H, Zhou X, Sun Y, Sheng X (2019) Polyamidoamine dendrimer decorated nanoparticles as an adsorbent for magnetic solid-phase extraction of tetrabromobisphenol A and 4-nonylphenol from environmental water samples. J Colloid Interface Sci 539:361–369

    Article  CAS  Google Scholar 

  4. Zhao C, Tang Z, Chung ACK, Wang H, Cai Z (2019) Metabolic perturbation, proliferation and reactive oxygen species jointly contribute to cytotoxicity of human breast cancer cell induced by tetrabromo and tetrachloro bisphenol A. Ecotoxicol Environ Saf 170:495–501

    Article  CAS  Google Scholar 

  5. Xie Z, Ebinghaus R, Lohmann R, Heemken O, Caba A, Puttmann W (2007) Trace determination of the flame retardant tetrabromobisphenol A in the atmosphere by gas chromatography-mass spectrometry. Anal Chim Acta 584:333–342

    Article  CAS  Google Scholar 

  6. Li Z, Wang Y, Vasylieva N, Wan D, Yin Z, Dong J, Hammock BD (2020) An ultrasensitive bioluminescent enzyme immunoassay based on nanobody/nanoluciferase heptamer fusion for the detection of tetrabromobisphenol A in sediment. Anal Chem 92:10083–10090

    Article  CAS  Google Scholar 

  7. Shi ZX, Wu YN, Li JG, Zhao YF, Feng JF (2009) Dietary exposure assessment of Chinese adults and nursing infants to tetrabromobisphenol-A and hexabromocyclododecanes: occurrence measurements in foods and human milk. Environ Sci Technol 43:4314–4319

    Article  CAS  Google Scholar 

  8. Kadasala NR, Wei A (2015) Trace detection of tetrabromobisphenol A by SERS with DMAP-modified magnetic gold nanoclusters. Nanoscale 7:10931–10935

    Article  CAS  Google Scholar 

  9. Bacaloni A, Callipo L, Corradini E, Giansanti P, Gubbiotti R, Samperi R, Laganà A (2009) Liquid chromatography-negative ion atmospheric pressure photoionization tandem mass spectrometry for the determination of brominated flame retardants in environmental water and industrial effluents. J Chromatogr A 1216:6400–6409

    Article  CAS  Google Scholar 

  10. Maduraiveeran G, Sasidharan M, Ganesan V (2018) Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103:113–129

    Article  CAS  Google Scholar 

  11. Zhang Z, Cai R, Long F, Wang J (2015) Development and application of tetrabromobisphenol A imprinted electrochemical sensor based on graphene/carbon nanotubes three-dimensional nanocomposites modified carbon electrode. Talanta 134:435–442

    Article  CAS  Google Scholar 

  12. Bel Bruno JJ (2019) Molecularly imprinted polymers. Chem Rev 119:94–119

    Article  CAS  Google Scholar 

  13. Chen L, Wang X, Lu W, Wu X, Li J (2016) Molecular imprinting: perspectives and applications. Chem Soc Rev 45:2137–2211

    Article  CAS  Google Scholar 

  14. Wang X, Yu S, Liu W, Fu L, Wang Y, Li J, Chen L (2018) Molecular imprinting based hybrid ratiometric fluorescence sensor for the visual determination of bovine hemoglobin. ACS Sens 3:378–385

    Article  CAS  Google Scholar 

  15. Samanidou V, Kehagia M, Kabir A, Furton KG (2016) Matrix molecularly imprinted mesoporous sol-gel sorbent for efficient solid-phase extraction of chloramphenicol from milk. Anal Chim Acta 914:62–74

    Article  CAS  Google Scholar 

  16. Sun Y, Ren T, Deng Z, Yang Y, Zhong S (2018) Molecularly imprinted polymers fabricated using Janus particle-stabilized Pickering emulsions and charged monomer polymerization. New J Chem 42:7355–7363

    Article  CAS  Google Scholar 

  17. Zeng H, Yu X, Wan J, Cao X (2020) Rational design and synthesis of molecularly imprinted polymers (MIP) for purifying tylosin by seeded precipitation polymerization. Process Biochem 94:329–339

    Article  CAS  Google Scholar 

  18. Qi J, Li B, Zhou N, Wang X, Deng D, Luo L, Chen L (2019) The strategy of antibody-free biomarker analysis by in-situ synthesized molecularly imprinted polymers on movable valve paper-based device. Biosens Bioelectron 142:111533

    Article  CAS  Google Scholar 

  19. Yin W, Wu L, Ding F, Li Q, Wang P, Li J, Lu Z, Han H (2018) Surface-imprinted SiO2@Ag nanoparticles for the selective detection of BPA using surface enhanced Raman scattering. Sens Actuators, B 258:566–573

    Article  CAS  Google Scholar 

  20. Yousefzadeh A, Hassanzadeh J, Mousavi SMJ, Yousefzadeh M (2019) Surface molecular imprinting and powerfully enhanced chemiluminescence emission by Cu nanoclusters/MOF composite for detection of tramadol. Sens Actuators, B 286:154–162

    Article  CAS  Google Scholar 

  21. Yuan Y, Yang Y, Zhu G (2020) Molecularly imprinted porous aromatic frameworks for molecular recognition. ACS Cent Sci 6:1082–1094

    Article  CAS  Google Scholar 

  22. Zhang M, Zhao HT, Xie TJ, Yang X, Dong AJ, Zhang H, Wang J, Wang ZY (2017) Molecularly imprinted polymer on graphene surface for selective and sensitive electrochemical sensing imidacloprid. Sens Actuators, B 252:991–1002

    Article  CAS  Google Scholar 

  23. Li L, Li Z, Jia L (2020) Molecularly imprinted polymer functionalized silica nanoparticles for enantioseparation of racemic tryptophan in aqueous solution. Mikrochim Acta 187:451–457

    Article  CAS  Google Scholar 

  24. An J, Li L, Ding Y, Hu W, Duan D, Lu H, Ye D, Zhu X, Chen H (2019) A novel molecularly imprinted electrochemical sensor based on Prussian blue analogue generated by iron metal organic frameworks for highly sensitive detection of melamine. Electrochim Acta 326:134946

    Article  CAS  Google Scholar 

  25. Zhao Q, Zhang H, Zhao H, Liu J, Liu J, Chen Z, Li B, Liao X, Regenstein JM, Wang J, Yang X (2020) Strategy of fusion covalent organic frameworks and molecularly imprinted polymers: a surprising effect in recognition and loading of cyanidin-3-O-glucoside. ACS Appl Mater Interfaces 12:8751–8760

    Article  CAS  Google Scholar 

  26. Fiorenza R, Di Mauro A, Cantarella M, Iaria C, Scalisi EM, Brundo MV, Gulino A, Spitaleri L, Nicotra G, Dattilo S, Carroccio SC, Privitera V, Impellizzeri G (2020) Preferential removal of pesticides from water by molecular imprinting on TiO2 photocatalysts. Chem Eng J 379:122309

    Article  CAS  Google Scholar 

  27. Zhao X, Cui Y, He Y, Wang S, Wang J (2020) Synthesis of multi-mode quantum dots encoded molecularly imprinted polymers microspheres and application in quantitative detection for dopamine. Sens Actuators, B 304:127265

    Article  CAS  Google Scholar 

  28. Lu Y, Hu J, Zeng Y, Zhu Y, Wang H, Lei X, Huang S, Guo L, Li L (2020) Electrochemical determination of rutin based on molecularly imprinted poly (ionic liquid) with ionic liquid-graphene as a sensitive element. Sens Actuators, B 311:127911

    Article  CAS  Google Scholar 

  29. Bezdekova J, Zemankova K, Hutarova J, Kociova S, Smerkova K, Adam V, Vaculovicova M (2020) Magnetic molecularly imprinted polymers used for selective isolation and detection of Staphylococcus aureus. Food Chem 321:126673

    Article  CAS  Google Scholar 

  30. Cui Y, Kang W, Qin L, Ma J, Liu X, Yang Y (2020) Magnetic surface molecularly imprinted polymer for selective adsorption of quinoline from coking wastewater. Chem Eng J 397:125480

    Article  CAS  Google Scholar 

  31. Paz-Cedeno FR, Carceller JM, Iborra S, Donato RK, Godoy AP, Veloso de Paula A, Monti R, Corma A, Masarin F (2021) Magnetic graphene oxide as a platform for the immobilization of cellulases and xylanases: ultrastructural characterization and assessment of lignocellulosic biomass hydrolysis. Renewable Energy 164:491–501

    Article  CAS  Google Scholar 

  32. Lou C, Jing T, Zhou J, Tian J, Zheng Y, Wang C, Zhao Z, Lin J, Liu H, Zhao C, Guo Z (2020) Laccase immobilized polyaniline/magnetic graphene composite electrode for detecting hydroquinone. Int J Biol Macromo l149:1130–1138

  33. Manousi N, Rosenberg E, Deliyanni E, Zachariadis GA, Samanidou V (2020) Magnetic solid-phase extraction of organic compounds based on graphene oxide nanocomposites. Molecules 25:1148–1169

    Article  CAS  Google Scholar 

  34. Foster EL, Bunha A, Advincula R (2012) Click chemistry and electro-grafting onto colloidally templated conducting polymer arrays. Polymer 53:3124–3134

    Article  CAS  Google Scholar 

  35. Mendonça PV, Serra AC, Popov AV, Guliashvili T, Coelho JFJ (2014) Efficient RAFT polymerization of N-(3-aminopropyl)methacrylamide hydrochloride using unprotected “clickable” chain transfer agents. React Funct Polym 81:1–7

    Article  Google Scholar 

  36. Zhao L, Zhao F, Zeng B (2014) Synthesis of water-compatible surface-imprinted polymer via click chemistry and RAFT precipitation polymerization for highly selective and sensitive electrochemical assay of fenitrothion. Biosens Bioelectron 62:19–24

    Article  CAS  Google Scholar 

  37. Gonzato C, Courty M, Pasetto P, Haupt K (2011) Magnetic molecularly imprinted polymer nanocomposites via surface-initiated RAFT polymerization. Adv Funct Mater 21:3947–3953

    Article  CAS  Google Scholar 

  38. Cui B, Liu P, Liu X, Liu S, Zhang Z (2020) Molecularly imprinted polymers for electrochemical detection and analysis: progress and perspectives. J Mater Res Techol 9:12568–12584

    Article  CAS  Google Scholar 

  39. Zouaoui F, Bourouina-Bacha S, Bourouina M, Jaffrezic-Renault N, Zine N, Errachid A (2020) Electrochemical sensors based on molecularly imprinted chitosan: a review. TrAC, Trends Anal Chem 130:115982

    Article  CAS  Google Scholar 

  40. Wang H, Sun J, Lu L, Yang X, Xia J, Zhang F, Wang Z (2020) Competitive electrochemical aptasensor based on a cDNA-ferrocene/MXene probe for detection of breast cancer marker Mucin1. Anal Chim Acta 1094:18–25

    Article  CAS  Google Scholar 

  41. Ma Z, Kang S, Ma J, Shao L, Zhang Y, Liu C, Wei A, Xiang X, Wei L, Gu J (2020) Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding. ACS Nano 14:8368–8382

    Article  CAS  Google Scholar 

  42. Rasheed PA, Pandey RP, Rasool K, Mahmoud KA (2018) Ultra-sensitive electrocatalytic detection of bromate in drinking water based on Nafion/Ti3C2Tx (MXene) modified glassy carbon electrode. Sens Actuators, B 265:652–659

    Article  Google Scholar 

  43. Yang X, Feng M, Xia J, Zhang F, Wang Z (2020) An electrochemical biosensor based on AuNPs/Ti3C2 MXene three-dimensional nanocomposite for microRNA-155 detection by exonuclease III-aided cascade target recycling. J Electroanal Chem 878:114669

    Article  CAS  Google Scholar 

  44. Shahzad F, Iqbal A, Zaidi SA, Hwang S-W, Koo CM (2019) Nafion-stabilized two-dimensional transition metal carbide (Ti3C2Tx MXene) as a high-performance electrochemical sensor for neurotransmitter. J Ind Eng Chem 79:338–344

    Article  CAS  Google Scholar 

  45. Zhou T, Feng Y, Zhou L, Tao Y, Luo D, Jing T, Shen X, Zhou Y, Mei S (2016) Selective and sensitive detection of tetrabromobisphenol-A in water samples by molecularly imprinted electrochemical sensor. Sens Actuators, B 236:153–162

    Article  CAS  Google Scholar 

  46. Chen H, Zhang Z, Cai R, Rao W, Long F (2014) Molecularly imprinted electrochemical sensor based on nickel nanoparticles-graphene nanocomposites modified electrode for determination of tetrabromobisphenol A. Electrochim Acta 117:385–392

    Article  CAS  Google Scholar 

  47. Zhang K, Kwabena AS, Wang N, Lu Y, Cao Y, Luan Y, Liu T, Peng H, Gu X, Xu W (2020) Electrochemical assays for the detection of TBBPA in plastic products based on rGO/AgNDs nanocomposites and molecularly imprinted polymers. J Electroanal Chem 862:114022

    Article  CAS  Google Scholar 

  48. Shen J, Gan T, Jin Y, Wang J, Wu K (2018) Electrochemical sensor based on electropolymerized dopamine molecularly imprinted film for tetrabromobisphenol A. J Electroanal Chem 826:10–15

    Article  CAS  Google Scholar 

  49. Liu C, Huang Q, Zheng K, Qin J, Zhou D, Wang J (2020) Impact of lithium salts on the combustion characteristics of electrolyte under diverse pressures. Energies 13:5373

    Article  CAS  Google Scholar 

  50. Liu C, Xu D, Weng J, Zhou S, Li W, Wan Y, Jiang S, Zhou D, Wang J, Huang Q (2020) Phase change materials application in battery thermal management system: a review. Materials 13:4622

    Article  CAS  Google Scholar 

  51. Liu C, Zheng K, Zhou Y, Zhu K, Huang Q (2021) Experimental thermal hazard investigation of pressure and EC/PC/EMC mass ratio on electrolyte. Energies 14:2511

    Article  CAS  Google Scholar 

  52. Alkhouzaam A, Qiblawey H, Khraisheh M, Atieh M, Al-Ghouti M (2020) Synthesis of graphene oxides particle of high oxidation degree using a modified Hummers method. Ceram Int 46:23997–24007

    Article  CAS  Google Scholar 

  53. Zhang R, Liu J, Li Y (2019) MXene with great adsorption ability toward organic dye: an excellent material for constructing a ratiometric electrochemical sensing platform. ACS Sens 4:2058–2064

    Article  CAS  Google Scholar 

  54. Shao Y, Bai H, Wang H, Fei G, Li L, Zhu Y (2021) Magnetically sensitive and high template affinity surface imprinted polymer prepared using porous TiO2-coated magnetite-silica nanoparticles for efficient removal of tetrabromobisphenol A from polluted water. Adv Compos Hybrid Mater 5:130–143

    Article  Google Scholar 

  55. Lv X, Huang W, Ding X, He J, Huang Q, Tan J, Cheng H, Feng J, Li L (2020) Preparation and photocatalytic activity of Fe3O4@SiO2@ZnO: La. J Rare Earths 38:1288–1296

    Article  CAS  Google Scholar 

  56. Abdi G, Alizadeh A, Amirian J, Rezaei S, Sharma G (2019) Polyamine-modified magnetic graphene oxide surface: feasible adsorbent for removal of dyes. J Mol Liq 289:111118

    Article  CAS  Google Scholar 

  57. Wei X, Wang Y, Chen J, Ni R, Meng J, Liu Z, Xu F, Zhou Y (2019) Ionic liquids skeleton typed magnetic core-shell molecularly imprinted polymers for the specific recognition of lysozyme. Anal Chim Acta 1081:81–92

    Article  CAS  Google Scholar 

  58. Sun Y, Peng D, Li Y, Guo H, Zhang N, Wang H, Mei P, Ishag A, Alsulami H, Alhodaly MS (2020) A robust prediction of U(VI) sorption on Fe3O4/activated carbon composites with surface complexation model. Environ Res 185:109467

    Article  CAS  Google Scholar 

  59. Guo J, Chen Z, El-Bahy ZM, Liu H, Abo-Dief HM, Abdul W, Abualnaja KM, Alanazi AK, Zhang P, Huang M, Hu G, Zhu J (2022) Tunable negative dielectric properties of magnetic CoFe2O4/graphite-polypyrrole metacomposites. Adv Compos Hybrid Mater 5:899–906

    Article  CAS  Google Scholar 

  60. Guo J, Li X, Chen Z, Zhu J, Mai X, Wei R, Sun K, Liu H, Chen Y, Naik N, Guo Z (2022) Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72

    Article  Google Scholar 

  61. Kim S-W, Kim H-K, Lee K, Roh KC, Han JT, Kim K-B, Lee S, Jung M-H (2019) Studying the reduction of graphene oxide with magnetic measurements. Carbon 142:373–378

    Article  CAS  Google Scholar 

  62. Chang L, Li Y, Chu J, Qi J, Li X (2010) Preparation of core-shell molecularly imprinted polymer via the combination of reversible addition-fragmentation chain transfer polymerization and click reaction. Anal Chim Acta 680:65–71

    Article  CAS  Google Scholar 

  63. Barras A, Lyskawa J, Szunerits S, Woisel P, Boukherroub R (2011) Direct functionalization of nanodiamond particles using dopamine derivatives. Langmuir 27:12451–12457

    Article  CAS  Google Scholar 

  64. Xiao Z-C, Li Y, Liang C-L, Bao R-Y, Yang M-B, Yang W (2020) Driven by electricity: multilayered GO-Fe3O4@PDA-PAM flake assembled micro flower-like anode for high-performance lithium ion batteries. Appl Surf Sci 499:143934

    Article  CAS  Google Scholar 

  65. Al-Hajj N, Mousli Y, Miche A, Humblot V, Hunel J, Heuzé K, Buffeteau T, Genin E, Vellutini L (2020) Influence of the grafting process on the orientation and the reactivity of azide-terminated monolayers onto silica surface. Appl Surf Sci 527:146778

    Article  CAS  Google Scholar 

  66. Liu J, Wang W, Xie Y, Huang Y, Liu Y, Liu X, Zhao R, Liu G, Chen Y (2011) A novel polychloromethylstyrene coated superparamagnetic surface molecularly imprinted core–shell nanoparticle for bisphenol A. J Mater Chem 21:9232–9238

    Article  CAS  Google Scholar 

  67. Shao Y, Zhou L, Wu Q, Bao C, Liu M (2017) Preparation of novel magnetic molecular imprinted polymers nanospheres via reversible addition - fragmentation chain transfer polymerization for selective and efficient determination of tetrabromobisphenol A. J Hazard Mater 339:418–426

    Article  CAS  Google Scholar 

  68. Liu X, Chen C (2020) Mxene enhanced the photocatalytic activity of ZnO nanorods under visible light. Mater Lett 261:127127

    Article  CAS  Google Scholar 

  69. Luo S, Wu Y, Mou Q, Li J, Luo X (2019) A thio-β-cyclodextrin functionalized graphene/gold nanoparticle electrochemical sensor: a study of the size effect of the gold nanoparticles and the determination of tetrabromobisphenol A. RSC Adv 9:17897–17904

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (Program No. 21806097), Scientific Research Program Funded by Shaanxi Provincial Education Department (Program No. 18JK0104), and Research Starting Foundation of Shaanxi University of Science and Technology (Program No. 2016BJ-80).

Author information

Authors and Affiliations

Authors

Contributions

Yanming Shao and Ying Zhu wrote the main manuscript text. Rui Zheng and Peng Wang prepared the molecularly imprinted polymer. Zhizhen Zhao and Jun An synthesized the alkyne terminated RAFT agent. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yanming Shao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 775 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, Y., Zhu, Y., Zheng, R. et al. Highly sensitive and selective surface molecularly imprinted polymer electrochemical sensor prepared by Au and MXene modified glassy carbon electrode for efficient detection of tetrabromobisphenol A in water. Adv Compos Hybrid Mater 5, 3104–3116 (2022). https://doi.org/10.1007/s42114-022-00562-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00562-8

Keywords

Navigation