Skip to main content

Advertisement

Log in

A self-sacrifice template strategy to synthesize silicon@carbon with interior void space for boosting lithium storage performance

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

A sufficient internal void space is highly desirable for relieving the volume expansion of silicon anode materials upon repeated insertion/extraction. Herein, Si/graphene@carbon (Si/G@C) composites with internal voids are prepared via ultrasonic spraying under vacuum, in which void spaces come into being by low-temperature calcinating acid citric (CA) as self-sacrifice template. Benefiting from the appropriate amount of void space in composites, Si/G@C-1gCA exhibits best electrochemical performances among the as-prepared composites, delivering a long-term cycle life (1048.8 mAhg−1 after 150 cycles at 2 Ag−1) and superior rate capability (660.6 mAhg−1 at 10 Ag−1). In contrast, excessive void spaces in composites would expectantly reduce the mechanical strength of carbon framework in composites, induce more electrolyte permeation into composites, lead to excessive decomposition of the electrolyte, and consequently result in unstable SEI-film evolution. The obtained investigation further reveals that appropriate amount of void spaces in Si/G@C composites is beneficial for the improved performances of anode materials in terms of stable SEI-film evolution and structural integrity.

Graphical abstract

This work offers a eco-friendly self-sacrifice template strategy for fabricating high-performance Si/graphene@carbon anodes with appropriate internal void.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armand M, Tarascon J-M (2008) Building better batteries. Nature 451:652–657. https://doi.org/10.1038/451652a

    Article  CAS  Google Scholar 

  2. An Y, Tian Y, Liu C, Xiong S, Feng J, Qian Y (2022) One-step, vacuum-assisted construction of micrometer-sized nanoporous silicon confined by uniform two-dimensional N-doped carbon toward advanced Li Ion and MXene-based Li metal batteries. ACS Nano 16:4560–4577. https://doi.org/10.1021/acsnano.1c11098

    Article  CAS  Google Scholar 

  3. He S, Huang S, Wang S, Mizota I, Liu X, Hou X (2021) Considering critical factors of silicon/graphite anode materials for practical high-energy lithium-ion battery applications. Energy Fuels 35:944–964. https://doi.org/10.1021/acs.energyfuels.0c02948

    Article  CAS  Google Scholar 

  4. Zhu G, Chao D, Xu W, Wu M, Zhang H (2021) Microscale silicon-based anodes: fundamental understanding and industrial prospects for practical high-energy lithium-ion batteries. ACS Nano 15:15567–15593. https://doi.org/10.1021/acsnano.1c05898

    Article  CAS  Google Scholar 

  5. He S, Huang S, Zhao Y, Qin H, Shan Y, Hou X (2021) Design of a dual-electrolyte battery system based on a high-energy NCM811-Si/C full battery electrode-compatible electrolyte. ACS Appl Mater Interfaces 13:54069–54078. https://doi.org/10.1021/acsami.1c17841

    Article  CAS  Google Scholar 

  6. Jin H, Sun Q, Wang J, Ma C, Ling L, Qiao W (2021) Preparation and electrochemical properties of novel silicon-carbon composite anode materials with a core-shell structure. New Carbon Mater 36:390–400. https://doi.org/10.1016/S1872-5805(21)60026-4

    Article  CAS  Google Scholar 

  7. Chen H, Hou X, Chen F, Wang S, Wu B, Ru Q, Qin H, Xia Y (2018) Milled flake graphite/plasma nano-silicon@carbon composite with void sandwich structure for high performance as lithium ion battery anode at high temperature. Carbon NY 130:433–440. https://doi.org/10.1016/j.carbon.2018.01.021

    Article  CAS  Google Scholar 

  8. Zheng R, Yu H, Zhang X, Ding Y, Xia M, Cao K, Shu J, Vlad A, Su B-L (2021) A TiSe2-graphite dual ion battery: fast na-ion insertion and excellent stability. Angew Chemie Int Ed 60:18430–18437. https://doi.org/10.1002/anie.202105439

    Article  CAS  Google Scholar 

  9. Li Y, Yan K, Lee H-W, Lu Z, Liu N, Cui Y (2016) Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat Energy 1:15029. https://doi.org/10.1038/nenergy.2015.29

    Article  CAS  Google Scholar 

  10. Zuo X, Zhu J, Müller-Buschbaum P, Cheng YJ (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143. https://doi.org/10.1016/j.nanoen.2016.11.013

    Article  CAS  Google Scholar 

  11. Xu Y, Yuan T, Bian Z, Sun H, Pang Y, Peng C, Yang J, Zheng S (2019) Electrospun flexible Si/C@CNF nonwoven anode for high capacity and durable lithium-ion battery. Compos Commun 11:1–5. https://doi.org/10.1016/j.coco.2018.10.012

    Article  Google Scholar 

  12. Qi Z, Dai L, Wang Z, Xie L, Chen J, Cheng J, Song G, Li X, Sun G, Chen C (2022) Optimizing the carbon coating to eliminate electrochemical interface polarization in a high performance silicon anode for use in a lithium-ion battery. New Carbon Mater 37:245–258. https://doi.org/10.1016/S1872-5805(22)60580-8

    Article  Google Scholar 

  13. Chen H, He S, Hou X, Wang S, Chen F, Qin H, Xia Y, Zhou G (2019) Nano-Si/C microsphere with hollow double spherical interlayer and submicron porous structure to enhance performance for lithium-ion battery anode. Electrochim Acta 312:242–250. https://doi.org/10.1016/j.electacta.2019.04.170

    Article  CAS  Google Scholar 

  14. Feng K, Li M, Liu W, Kashkooli AG, Xiao X, Cai M, Chen Z (2018) Silicon-based anodes for lithium-ion batteries: from fundamentals to practical applications. Small 14:1702737. https://doi.org/10.1002/smll.201702737

    Article  CAS  Google Scholar 

  15. Li X, Yan P, Xiao X, Woo JH, Wang C, Liu J, Zhang J-G (2017) Design of porous Si/C–graphite electrodes with long cycle stability and controlled swelling. Energy Environ Sci 10:1427–1434. https://doi.org/10.1039/C7EE00838D

    Article  CAS  Google Scholar 

  16. Jeong M-G, Du HL, Islam M, Lee JK, Sun Y-K, Jung H-G (2017) Self-rearrangement of silicon nanoparticles embedded in micro-carbon sphere framework for high-energy and long-life lithium-ion batteries. Nano Lett 17:5600–5606. https://doi.org/10.1021/acs.nanolett.7b02433

    Article  CAS  Google Scholar 

  17. Li X, Xing Y, Xu J, Deng Q, Shao LH (2020) Uniform yolk-shell structured Si-C nanoparticles as a high performance anode material for the Li-ion battery. Chem Commun 56:364–367. https://doi.org/10.1039/c9cc07997a

    Article  CAS  Google Scholar 

  18. An W, Gao B, Mei S, Xiang B, Fu J, Wang L, Zhang Q, Chu PK, Huo K (2019) Scalable synthesis of ant-nest-like bulk porous silicon for high-performance lithium-ion battery anodes. Nat Commun 10:1–11. https://doi.org/10.1038/s41467-019-09510-5

    Article  CAS  Google Scholar 

  19. Entwistle J, Rennie A, Patwardhan S (2018) A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond. J Mater Chem A 6:18344–18356. https://doi.org/10.1039/c8ta06370b

    Article  CAS  Google Scholar 

  20. Du FH, Ni Y, Wang Y, Wang D, Ge Q, Chen S, Yang HY (2017) Green fabrication of silkworm cocoon-like silicon-based composite for high-performance li-ion batteries. ACS Nano 11:8628–8635. https://doi.org/10.1021/acsnano.7b03830

    Article  CAS  Google Scholar 

  21. Zhang L, Rajagopalan R, Guo H, Hu X, Dou S, Liu H (2016) A Green and facile way to prepare granadilla-like silicon-based anode materials for Li-Ion batteries. Adv Funct Mater 26:440–446. https://doi.org/10.1002/adfm.201503777

    Article  CAS  Google Scholar 

  22. He Y, Jiang L, Chen T, Xu Y, Jia H, Yi R, Xue D, Song M, Genc A, Bouchet-Marquis C, Pullan L, Tessner T, Yoo J, Li X, Zhang JG, Zhang S, Wang C (2021) Progressive growth of the solid–electrolyte interphase towards the Si anode interior causes capacity fading. Nat Nanotechnol 16:1113–1120. https://doi.org/10.1038/s41565-021-00947-8

    Article  CAS  Google Scholar 

  23. Wan TH, Saccoccio M, Chen C, Ciucci F (2015) Influence of the discretization methods on the distribution of relaxation times deconvolution: implementing radial basis functions with DRTtools. Electrochim Acta 184:483–499. https://doi.org/10.1016/j.electacta.2015.09.097

    Article  CAS  Google Scholar 

  24. Jia H, Zheng J, Song J, Luo L, Yi R, Estevez L, Zhao W, Patel R, Li X, Zhang J-G (2018) A novel approach to synthesize micrometer-sized porous silicon as a high performance anode for lithium-ion batteries. Nano Energy 50:589–597. https://doi.org/10.1016/j.nanoen.2018.05.048

    Article  CAS  Google Scholar 

  25. Zhu J, Wang T, Fan F, Mei L, Lu B (2016) Atomic-scale control of silicon expansion space as ultrastable battery anodes. ACS Nano 10:8243–8251. https://doi.org/10.1021/acsnano.6b04522

    Article  CAS  Google Scholar 

  26. Tang S, Jin S, Zhang R, Liu Y, Wang J, Hu Z, Lu W, Yang S, Qiao W, Ling L, Jin M (2019) Effective reduction of graphene oxide via a hybrid microwave heating method by using mildly reduced graphene oxide as a susceptor. Appl Surf Sci 473:222–229. https://doi.org/10.1016/j.apsusc.2018.12.096

    Article  CAS  Google Scholar 

  27. Kim D-H, Jang J-S, Koo W-T, Kim I (2018) Graphene oxide templating: facile synthesis of morphology engineered crumpled SnO2 nanofibers for superior chemiresistors. J Mater Chem A 6:13825–13834. https://doi.org/10.1039/C8TA03579B

    Article  CAS  Google Scholar 

  28. Mo R, Lei Z, Rooney D, Sun K (2019) Anchored monodispersed silicon and sulfur nanoparticles on graphene for high-performance lithiated silicon-sulfur battery. Energy Storage Mater 23:284–291. https://doi.org/10.1016/j.ensm.2019.04.046

    Article  Google Scholar 

  29. Fu Y, Hu J, Wang Q, Lin D, Li K, Zhou L (2019) Thermally etched porous carbon cloth catalyzed by metal organic frameworks as sulfur hosts for lithium–sulfur batteries. Carbon NY 150:76–84. https://doi.org/10.1016/j.carbon.2019.05.008

    Article  CAS  Google Scholar 

  30. Pham-Cong D, Park JS, Kim JH, Kim J, Braun PV, Choi JH, Kim SJ, Jeong SY, Cho CR (2017) Enhanced cycle stability of polypyrrole-derived nitrogen-doped carbon-coated tin oxide hollow nanofibers for lithium battery anodes. Carbon N Y 111:28–37. https://doi.org/10.1016/j.carbon.2016.09.057

    Article  CAS  Google Scholar 

  31. Zhou D, Tan X, Wu H, Tian L, Li M (2019) Synthesis of C−C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid–liquid interface. Angew Chemie Int Ed 58:1376–1381. https://doi.org/10.1002/anie.201811399

    Article  CAS  Google Scholar 

  32. Zheng G, Xiang Y, Xu L, Luo H, Wang B, Liu Y, Han X, Zhao W, Chen S, Chen H, Zhang Q, Zhu T, Yang Y (2018) Controlling surface oxides in Si/C nanocomposite anodes for high-performance Li-ion batteries. Adv Energy Mater 8:1801718. https://doi.org/10.1002/aenm.201801718

    Article  CAS  Google Scholar 

  33. Tao J, Yan Z, Yang J, Li J, Lin Y, Huang Z (2022) Boosting the cell performance of the SiOx@C anode material via rational design of a Si-valence gradient. Carbon Energy 4:129–141. https://doi.org/10.1002/cey2.141

    Article  CAS  Google Scholar 

  34. An Y, Tian Y, Wei H, Xi B, Xiong S, Feng J, Qian Y (2020) Porosity- and graphitization-controlled fabrication of nanoporous silicon@carbon for lithium storage and its conjugation with MXene for lithium-metal anode. Adv Funct Mater 30:1908721. https://doi.org/10.1002/adfm.201908721

    Article  CAS  Google Scholar 

  35. Tian Y, An Y, Feng J (2019) Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 11:10004–10011. https://doi.org/10.1021/acsami.8b21893

    Article  CAS  Google Scholar 

  36. An Y, Tian Y, Zhang Y, Wei C, Tan L, Zhang C, Cui N, Xiong S, Feng J, Qian Y (2020) Two-dimensional silicon/carbon from commercial alloy and CO2 for lithium storage and flexible Ti3C2Tx MXene-based lithium–metal batteries. ACS Nano 14:17574–17588. https://doi.org/10.1021/acsnano.0c08336

    Article  CAS  Google Scholar 

  37. Nakatani N, Kishida K, Nakagawa K (2018) Effect of SEI component on graphite electrode performance for Li-ion battery using ionic liquid electrolyte. J Electrochem Soc 165:A1621–A1625. https://doi.org/10.1149/2.0361809jes

    Article  CAS  Google Scholar 

  38. Mu G, Mu D, Wu B, Ma C, Bi J, Zhang L, Yang H, Wu F (2019) Pomegranate-like shell structured Si@C with tunable inner-space as an anode material for lithium-ion battery. J Power Sources 441:227193. https://doi.org/10.1016/j.jpowsour.2019.227193

    Article  CAS  Google Scholar 

  39. Li J, Dudney NJ, Nanda J, Liang C (2014) Artificial solid electrolyte interphase to address the electrochemical degradation of silicon electrodes. ACS Appl Mater Interfaces 6:10083–10088. https://doi.org/10.1021/am5009419

    Article  CAS  Google Scholar 

  40. Lu H, Wu L, Xiao L, Ai X, Yang H, Cao Y (2016) Investigation of the effect of fluoroethylene carbonate additive on electrochemical performance of Sb-based anode for sodium-ion batteries. Electrochim Acta 190:402–408. https://doi.org/10.1016/j.electacta.2015.12.136

    Article  CAS  Google Scholar 

  41. Huang C, Liu Y, Zheng R, Yang Z, Miao Z, Zhang J, Cai X, Yu H, Zhang L, Shu J (2022) Interlayer gap widened TiS2 for highly efficient sodium-ion storage. J Mater Sci Technol 107:64–69. https://doi.org/10.1016/j.jmst.2021.08.035

    Article  Google Scholar 

  42. Tao J, Lu L, Wu B, Fan X, Yang Y, Li J, Lin Y, Li YY, Huang Z, Lu J (2020) Dramatic improvement enabled by incorporating thermal conductive TiN into Si-based anodes for lithium ion batteries. Energy Storage Mater 29:367–376. https://doi.org/10.1016/j.ensm.2019.12.025

    Article  Google Scholar 

  43. Zeng G, An Y, Xiong S, Feng J (2019) Nonflammable fluorinated carbonate electrolyte with high salt-to-solvent ratios enables stable silicon-based anode for next-generation lithium-ion batteries. ACS Appl Mater Interfaces 11:23229–23235. https://doi.org/10.1021/acsami.9b05570

    Article  CAS  Google Scholar 

  44. Choudhury S, Tu Z, Stalin S, Vu D, Fawole K, Gunceler D, Sundararaman R, Archer LA (2017) Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew Chemie Int Ed 56:13070–13077. https://doi.org/10.1002/anie.201707754

    Article  CAS  Google Scholar 

  45. Li Q, Liu X, Han X, Xiang Y, Zhong G, Wang J, Zheng B, Zhou J, Yang Y (2019) Identification of the solid electrolyte interface on the si/c composite anode with FEC as the additive. ACS Appl Mater Interfaces 11:14066–14075. https://doi.org/10.1021/acsami.8b22221

    Article  CAS  Google Scholar 

  46. Schroder K, Alvarado J, Yersak TA, Li J, Dudney N, Webb LJ, Meng YS, Stevenson KJ (2015) The effect of fluoroethylene carbonate as an additive on the solid electrolyte interphase on silicon lithium-ion electrodes. Chem Mater 27:5531–5542. https://doi.org/10.1021/acs.chemmater.5b01627

    Article  CAS  Google Scholar 

  47. Kennedy T, Brandon M, Laffir F, Ryan KM (2017) Understanding the influence of electrolyte additives on the electrochemical performance and morphology evolution of silicon nanowire based lithium-ion battery anodes. J Power Sources 359:601–610. https://doi.org/10.1016/j.jpowsour.2017.05.093

    Article  CAS  Google Scholar 

  48. Han X, Zhang Z, Chen H, You R, Zheng G, Zhang Q, Wang J, Li C, Chen S, Yang Y (2019) Double-shelled microscale porous Si anodes for stable lithium-ion batteries. J Power Sources 436:226794. https://doi.org/10.1016/j.jpowsour.2019.226794

    Article  CAS  Google Scholar 

  49. Eshetu GG, Figgemeier E (2019) Confronting the challenges of next-generation silicon anode-based lithium-ion batteries: role of designer electrolyte additives and polymeric binders. Chemsuschem 12:2515–2539. https://doi.org/10.1002/cssc.201900209

    Article  CAS  Google Scholar 

Download references

Funding

This work was jointly supported by the Natural Science Foundations of China (No. 12174057, 22179020), Natural Science Foundation of Fujian Province (Grant No. 2021L3011), and Fujian Natural Science Foundation for Distinguished Young Scholars (Grant No. 2020J06042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianming Tao or Yingbin Lin.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1957 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Wu, B., Tao, J. et al. A self-sacrifice template strategy to synthesize silicon@carbon with interior void space for boosting lithium storage performance. Adv Compos Hybrid Mater 5, 3002–3011 (2022). https://doi.org/10.1007/s42114-022-00528-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00528-w

Keywords

Navigation