Skip to main content
Log in

Effective removal of proteins and polysaccharides from biotreated wastewater by polyaniline composites

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

The proteins and polysaccharides are always remained in the effluent of biotreated process, which leads to further pollution for advanced treatment or aqueous environment. In this study, Fe3O4/polynailine composite (Fe3O4@PANI) was prepared by means of in situ surface polymerization, and was used as the adsorbent for removal of proteins and polysaccharides from biotreated wastewater. The removal rate of polysaccharide by PANI (69.43%) was higher than that by Fe3O4@PANI (61.33%), while the removal percentage of protein by Fe3O4@PANI (65.25%) was higher than that by original PANI (47.56%). The adsorption process was fitted well with the quasi-first-order kinetic and Langmuir isotherm models. Finally, it was determined that electrostatic attraction is the primary mechanism for the adsorption of proteins and polysaccharides by PANI-based materials.

Graphical abstract

The Fe3O4/polyaniline can significantly remove proteins and polysaccharides from bio-treated wastewater due to its positively charged surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wainaina S et al (2020) Resource recovery and circular economy from organic solid waste using aerobic and anaerobic digestion technologies. Bioresour Technol 301:122778. https://doi.org/10.1016/j.biortech.2020.122778

    Article  CAS  Google Scholar 

  2. Li LL, Tong ZH, Fang CY, Chu J, Yu HQ (2015) Response of anaerobic granular sludge to single-wall carbon nanotube exposure. Water Res 70:1–8. https://doi.org/10.1016/j.watres.2014.11.042

    Article  CAS  Google Scholar 

  3. Benyahia B, Sari T, Harmand J, Cherki B (2011) Modeling of the soluble microbial products (SMP) in anaerobic membrane bioreactors (AMBR): equilibria and stability of the AM2b model. IFAC Proc 44:3789–3794. https://doi.org/10.3182/20110828-6-IT-1002.01195

    Article  Google Scholar 

  4. Lee DY, Li YY, Noike T, Cha GC (2008) Behavior of extracellular polymers and bio-fouling during hydrogen fermentation with a membrane bioreactor. J Membr Sci 322:13–18. https://doi.org/10.1016/j.memsci.2008.04.031

    Article  CAS  Google Scholar 

  5. Wu M, Liang Y, Peng H, Ye J, Wu J, Shi W, Liu W (2019) Bioavailability of soluble microbial products as the autochthonous precursors of disinfection by-products in aerobic and anoxic surface water. Sci Total Environ 649:960–968. https://doi.org/10.1016/j.scitotenv.2018.08.354

    Article  CAS  Google Scholar 

  6. Wisniewski C, Grasmick A (1998) Floc size distribution in a membrane bioreactor and consequences for membrane fouling. Colloid Surface A 138:403–411. https://doi.org/10.1016/S0927-7757(96)03898-8

    Article  CAS  Google Scholar 

  7. Sunny W, Greg G, Hoek Eric MV (2005) Direct observation of microbial adhesion to membranes. Environ Sci Technol 39:6461–6469. https://doi.org/10.1021/es050188s

    Article  CAS  Google Scholar 

  8. Meng PC, Peiying H, Huiling G, Wen TL (2005) Biofilm formation characteristics of bacterial isolates retrieved from a reverse osmosis membrane. Environ Sci Technol 39:7541–7550. https://doi.org/10.1021/es050170h

    Article  CAS  Google Scholar 

  9. Chen MY, Lee DJ, Tay J (2006) Extracellular polymeric substances in fouling layer. Sep Sci Technol 41:1467–1474. https://doi.org/10.1080/01496390600683597

    Article  CAS  Google Scholar 

  10. Ramesh A, Lee D, Wang M, Hsu J, Juang R, Hwang K, Liu J, Tseng S (2006) Biofouling in membrane bioreactor. Sep Sci Technol 41:1345–1370. https://doi.org/10.1080/01496390600633782

    Article  CAS  Google Scholar 

  11. Visvanathan C, Abeynayaka A (2012) Developments and future potentials of anaerobic membrane bioreactors (AnMBRs). Membr Water Treat 3:1–23. https://doi.org/10.12989/mwt.2012.3.1.001

  12. Zhang W, Cao B, Wang D, Ma T, Xia H, Yu D (2016) Influence of wastewater sludge treatment using combined peroxyacetic acid oxidation and inorganic coagulants re-flocculation on characteristics of extracellular polymeric substances (EPS). Water Res 88:728–739. https://doi.org/10.1016/j.watres.2015.10.049

    Article  CAS  Google Scholar 

  13. Davis JA (1982) Adsorption of natural dissolved organic matter at the oxide/water interface. Geochim Cosmochim Acta 46:2381–2393. https://doi.org/10.1016/0016-7037(82)90209-5

    Article  CAS  Google Scholar 

  14. Kim J, Kim K, Ye H, Lee E, Shin C, McCarty PL, Bae J (2011) Anaerobic fluidized bed membrane bioreactor for wastewater treatment. Environ Sci Technol 45:576–581. https://doi.org/10.1021/es1027103

    Article  CAS  Google Scholar 

  15. Chen L, Cheng P, Ye L, Chen H, Xu X, Zhu L (2020) Biological performance and fouling mitigation in the biochar-amended anaerobic membrane bioreactor (AnMBR) treating pharmaceutical wastewater. Bioresource Technol 302:122805. https://doi.org/10.1016/j.biortech.2020.122805

    Article  CAS  Google Scholar 

  16. Luo X, Yang G, Schubert DW (2021) Electrically conductive polymer composite containing hybrid graphene nanoplatelets and carbon nanotubes: synergistic effect and tunable conductivity anisotropy. Adv Compos Hybrid Ma. https://doi.org/10.1007/s42114-021-00332-y

    Article  Google Scholar 

  17. Nguyen TD, Nguyen TA, Pham M, Piro B, Normand B, Takenouti H (2004) Mechanism for protection of iron corrosion by an intrinsically electronic conducting polymer. J Electroanal Chem 572:225–234. https://doi.org/10.1016/j.jelechem.2003.09.028

    Article  CAS  Google Scholar 

  18. Bleda-Martínez MJ, Morallon E, Cazorla-Amorós D (2007) Polyaniline/porous carbon electrodes by chemical polymerisation: effect of carbon surface chemistry. Electrochim Acta 52:4962–4968. https://doi.org/10.1016/j.electacta.2007.01.073

    Article  CAS  Google Scholar 

  19. Humpolíček P et al (2015) Stem cell differentiation on conducting polyaniline. RSC Adv 5:68796–68805. https://doi.org/10.1039/C5RA12218J

    Article  CAS  Google Scholar 

  20. Lü Z, Xiujuan X, Biao P, Guofeng F (2016) Extracellular polymeric substance (EPS) characteristics and comparison of suspended and attached activated sludge at low temperatures. J Thu (Sci Technol) 56:1009–1015. https://doi.org/10.16511/j.cnki.qhdxxb.2016.21.051

  21. Zhang F, Cui W, Wang B, Xu B, Liu X, Liu X, Jia Z, Wu G (2021) Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities. Compos Part B-Eng 204:108491. https://doi.org/10.1016/j.compositesb.2020.108491

    Article  CAS  Google Scholar 

  22. Ingle R V, Shaikh S F, Bhujbal P K, Pathan H M, Tabhane VA (2020) Polyaniline doped with protonic acids: optical and morphological studies. ES Mater Mfg 8:54–59. https://doi.org/10.30919/esmm5f732

  23. Hu Q, Zhou J, Qiu B, Wang Q, Song G, Guo Z (2021) Synergistically improved methane production from anaerobic wastewater treatment by iron/polyaniline composite. Adv Compos Hybrid Ma 2:265–273. https://doi.org/10.1021/acssuschemeng.8b05847

    Article  CAS  Google Scholar 

  24. Liu S, Liu X, Li Z, Yang S, Wang J (2011) Fabrication of free-standing graphene/polyaniline nanofibers composite paper via electrostatic adsorption for electrochemical supercapacitors. New J Chem 35:369–374. https://doi.org/10.1039/C0NJ00718H

    Article  CAS  Google Scholar 

  25. Liao Y, Wang Y, Ouyang L, Dong Y, Zhou J, Hu Q, Qiu B (2021) Conductive polyaniline enhanced decolorization of azo dyes in anaerobic wastewater treatment. FAF 6: 35–42. https://doi.org/10.30919/esfaf584

  26. Li S et al (2019) Facile synthesis of nanostructured polyaniline in ionic liquids for high solubility and enhanced electrochemical properties. Adv Compos Hybrid Ma 2:279–288. https://doi.org/10.1007/s42114-019-00103-w

    Article  CAS  Google Scholar 

  27. Guo J, Chen Z, Abdul W, Kong J, Khan MA, Young DP, Zhu J, Guo Z (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Adv Compos Hybrid Ma 4:534–542. https://doi.org/10.1007/s42114-021-00242-z

    Article  CAS  Google Scholar 

  28. Shao Y, Bai H, Wang H, Fei G, Li L, Zhu Y (2021) Magnetically sensitive and high template affinity surface imprinted polymer prepared using porous TiO2-coated magnetite-silica nanoparticles for efficient removal of tetrabromobisphenol A from polluted water. Adv Compos Hybrid Ma. https://doi.org/10.1007/s42114-021-00361-7

    Article  Google Scholar 

  29. Dwivedi M (2018) Exopolysaccharide (EPS) producing isolates from sugarcane field soil and antibacterial activity of extracted EPSs. Acta Scientific Microbiology 1:06–13. https://doi.org/10.31080/ASMI.2018.01.0032

  30. Felz S, Vermeulen P, Loosdrecht MC, Lin YM (2019) Chemical characterization methods for the analysis of structural extracellular polymeric substances (EPS). Water Res 157:201–208. https://doi.org/10.1016/j.watres.2019.03.068

    Article  CAS  Google Scholar 

  31. Kang E, Ting Y, Neoh K, Tan K (1995) Electroless recovery of precious metals from acid solutions by N-containing electroactive polymers. Synthetic Met 69:477–478. https://doi.org/10.1016/0379-6779(94)02533-5

    Article  CAS  Google Scholar 

  32. Neoh KG, Pun MY, Kang ET, Tan KL (1995) Polyaniline treated with organic acids: doping characteristics and stability. Synthetic Met 73:209–215. https://doi.org/10.1016/0379-6779(95)80018-2

    Article  CAS  Google Scholar 

  33. Chiang JC, MacDiarmid AG (1986) ‘Polyaniline’: protonic acid doping of the emeraldine form to the metallic regime. Synthetic Met 13:193–205. https://doi.org/10.1016/0379-6779(86)90070-6

    Article  CAS  Google Scholar 

  34. Kassahun K et al (2001) Studies on the metabolism of troglitazone to reactive intermediates in vitro and in vivo. Evidence for novel biotransformation pathways involving quinone methide formation and thiazolidinedione ring scission. Chem Res Toxicol 14:62–70. https://doi.org/10.1021/tx000180q

    Article  CAS  Google Scholar 

  35. Wei Y, Luo W, Zhuang Z, Dai B, Ding J, Li T, Ma M, Yin X, Ma Y (2021) Fabrication of ternary MXene/MnO2/polyaniline nanostructure with good electrochemical performances. Adv Compos Hybrid Ma 4:1082–1091. https://doi.org/10.1007/s42114-021-00323-z

    Article  CAS  Google Scholar 

  36. Arasi AY, Jeyakumari JJL, Sundaresan B, Dhanalakshmi V, Anbarasan R (2009) The structural properties of poly (aniline)—analysis via FTIR spectroscopy. Spectrochim Acta A 74:1229–1234. https://doi.org/10.1016/j.saa.2009.09.042

    Article  CAS  Google Scholar 

  37. Trchová M, Šeděnková I, Tobolková E, Stejskal J (2004) FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. Polym Degrad Stabil 86: 179–185. https://doi.org/10.1016/j.polymdegradstab.2004.04.011

  38. Du J et al (2020) Boosting the utilization and electrochemical performances of polyaniline by forming a binder-free nanoscale coaxially coated polyaniline/carbon nanotube/carbon fiber paper hierarchical 3D microstructure composite as a supercapacitor electrode. ACS Omega 5:22119–22130. https://doi.org/10.1021/acsomega.0c02151

    Article  CAS  Google Scholar 

  39. Mostafaei A, Zolriasatein A (2012) Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods. Prog Nat Sci Mater 22:273–280. https://doi.org/10.1016/j.pnsc.2012.07.002

    Article  Google Scholar 

  40. Gupta P, Dillon AC, Bracker AS, George SM (1991) FTIR studies of H2O and D2O decomposition on porous silicon surfaces. Surf Sci Lett 245:360–372. https://doi.org/10.1016/0039-6028(91)90038-T

    Article  CAS  Google Scholar 

  41. Zhuang Z, Wang W, Wei Y, Li T, Ma M, Ma Y (2021) Preparation of polyaniline nanorods/manganese dioxide nanoflowers core/shell nanostructure and investigation of electrochemical performances. Adv Compos Hybrid Ma 4:938–945. https://doi.org/10.1007/s42114-021-00225-0

    Article  CAS  Google Scholar 

  42. Nicolet Y, Lacey AL, Vernède X, Fernandez VM, Hatchikian EC, Fontecilla Camps JC (2001) Crystallographic and FTIR spectroscopic evidence of changes in Fe coordination upon reduction of the active site of the Fe-only hydrogenase from Desulfovibrio desulfuricans. J Am Chem Soc 123:1596–1601. https://doi.org/10.1021/ja0020963

    Article  CAS  Google Scholar 

  43. Liu S, Yu B, Wang S, Shen Y, Cong H (2020) Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv Colloid Interface Sci 281:102165. https://doi.org/10.1016/j.cis.2020.102165

    Article  CAS  Google Scholar 

  44. Liu B, Wang D, Yu G, Meng X (2013) Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives - a review. J Ocean Univ China 12:500–508. https://doi.org/10.1007/s11802-013-2113-0

    Article  CAS  Google Scholar 

  45. Yahyaei M, Mehrnejad F, Naderi MH, Rezayan AH (2018) Protein adsorption onto polysaccharides: comparison of chitosan and chitin polymers. Carbohydr Polyme 191:191–197. https://doi.org/10.1016/j.carbpol.2018.03.034

    Article  CAS  Google Scholar 

  46. Liu B, Wang D, Yu G, Meng X (2013) Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives - a review. J Ocean Univ China 12:500–508. https://doi.org/10.1007/s11802-013-2113-0

    Article  CAS  Google Scholar 

  47. Huang W, He H, Dong B, Chu H, Xu G, Yan Z (2015) Effects of macro-porous anion exchange and coagulation treatment on organic removal and membrane fouling reduction in water treatment. Desalination 355:204–216. https://doi.org/10.1016/j.desal.2014.10.045

    Article  CAS  Google Scholar 

  48. Feng Z, Shao Z, Yao J, Huang Y, Chen X (2009) Protein adsorption and separation with chitosan-based amphoteric membranes. Polymer 50:1257–1263. https://doi.org/10.1016/j.polymer.2008.12.046

    Article  CAS  Google Scholar 

  49. Shi Y, Liu T, Han Y, Zhu X, Zhao X, Ma X, Jiang D, Zhang Q (2017) An efficient method for decoloration of polysaccharides from the sprouts of Toona sinensis (A. Juss.) Roem by anion exchange macroporous resins. Food chem 217:461–468. https://doi.org/10.1016/j.foodchem.2016.08.079

    Article  CAS  Google Scholar 

  50. Yang R, Meng D, Song Y, Li J, Zhang Y, Hu X, Ni Y, Li Q (2012) Simultaneous decoloration and deproteinization of crude polysaccharide from pumpkin residues by cross-linked polystyrene macroporous resin. J Agric Food chem 60:8450–8456. https://doi.org/10.1021/jf3031315

    Article  CAS  Google Scholar 

  51. Yang X, Yi H, Tang X, Zhao S, Yang Z, Ma Y, Feng T, Cui X (2018) Behaviors and kinetics of toluene adsorption-desorption on activated carbons with varying pore structure. J Environ Sci 67:104–114. https://doi.org/10.1016/j.jes.2017.06.032

    Article  CAS  Google Scholar 

  52. Yang W, Yu Z, Pan B, Lv L, Zhang W (2015) Simultaneous organic/inorganic removal from water using a new nanocomposite adsorbent: a case study of p-nitrophenol and phosphate. Chem Eng J 268:399–407. https://doi.org/10.1016/j.cej.2015.01.051

    Article  CAS  Google Scholar 

  53. Craik AD, Leibovich S (1976) A rational model for Langmuir circulations. J Fluid Mech 73:401–426. https://doi.org/10.1017/S0022112076001420

    Article  Google Scholar 

  54. Dragan ES, Humelnicu D, Dinu MV, Olariu RI (2017) Kinetics, equilibrium modeling, and thermodynamics on removal of Cr (VI) ions from aqueous solution using novel composites with strong base anion exchanger microspheres embedded into chitosan/poly (vinyl amine) cryogels. Chem Eng J 330:675–691. https://doi.org/10.1016/j.cej.2017.08.004

    Article  CAS  Google Scholar 

  55. Meng F, Zhou Z, Ni BJ, Zheng X, Huang G, Jia X, Li S, Xiong Y, Kraume M (2011) Characterization of the size-fractionated biomacromolecules: tracking their role and fate in a membrane bioreactor. Water Res 45:4661–4671. https://doi.org/10.1016/j.watres.2011.06.026

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the Fundamental Research Funds for the Central Universities (2021ZY77). The authors also extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number “x_2020_IF.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Qiu, Hamdy Khamees Thabet or Zhanhu Guo.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 623 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Huang, W., Qiu, B. et al. Effective removal of proteins and polysaccharides from biotreated wastewater by polyaniline composites. Adv Compos Hybrid Mater 5, 1888–1898 (2022). https://doi.org/10.1007/s42114-022-00508-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00508-0

Keywords

Navigation