Skip to main content
Log in

Confining FeNi nanoparticles in biomass-derived carbon for effectively photo-Fenton catalytic reaction for polluted water treatment

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Photo-Fenton catalytic degradation organic contaminant is considered as a promising approach to water purification and environmental remediation. The novel class of photo-Fenton heterogeneous composite with large specific surface area, abundant active sites, uniform and stable metal ions, and fast Fe2+/Fe3+ conversion rate is considered as potential catalysts. Herein, a highly efficient and sustainable photo-Fenton heterogeneous composite (FeNi@corncob-activated carbon (CCAC)) was prepared by confining FeNi nanoparticles in CCAC through a simple solvothermal and activated-carbonization method. The porous structure and a high specific surface area of CCAC would effectively disperse FeNi nanoparticles, causing a significantly enhanced photo-Fenton catalytic performance. The RhB degradation rate of FeNi@CCAC was 2.3 times higher than that of FeNi. After five cycles, RhB degradation rate of FeNi@CCAC was barely decreased, confirming that FeNi@CCAC had high cyclability and reproducibility. Moreover, the reaction mechanism was analyzed in-depth via photoelectrochemical and electron spin resonance characterization. The outstanding results can be attributed to the contribution of the active species ‧OH, ‧O2, and h+ in photo-Fenton degradation of RhB. Notably, FeNi@CCAC also has excellent photo-Fenton catalytic performance in sewage. This work illustrates a simple and effective method to improve the photo-Fenton catalytic reaction.

Graphical abstract

MOF-derived FeNi nanoparticles were confined in corncob-activated carbon to prepare a high-efficiency photo-Fenton heterogeneous composite for catalytic degradation of organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xin T, Zhao Y, Mahjoub R, Jiang J, Yadav A, Nomoto K, Niu R, Tang S, Ji F, Quadir Z, Miskovic D, Daniels J, Wanqiang Xu, Liao X, Chen L, Hagihara K, Li X, Ringer S, Ferry M (2021) Ultrahigh specific strength in a magnesium alloy strengthened by spinodal decomposition. Sci Adv 7:3039–3047. https://doi.org/10.1126/sciadv.abf3039

    Article  CAS  Google Scholar 

  2. Qu K, Sun Z, Shi C, Wang W, Xiao L, Tian J, Huang Z, Guo Z (2021) Dual-acting cellulose nanocomposites filled with carbon nanotubes and zeolitic imidazolate framework-67 (ZIF-67)–derived polyhedral porous Co3O4 for symmetric supercapacitors. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00293-2

    Article  Google Scholar 

  3. Yu Z, Yan Z, Zhang F, Wang J, Shao Q, Murugadoss V, Alhadhrami A, Mersal G, Ibrahim M, El-Bahy Z, Li Y, Huang M, Guo Z(2022) Waterborne acrylic resin co-modified by itaconic acid and γ-methacryloxypropyl triisopropoxidesilane for improved mechanical properties, thermal stability, and corrosion resistance. Prog Org Coat in press. https://doi.org/10.1016/j.porgcoat.2022.106875

  4. Jing X, Li Y, Zhu J, Chang L, Maganti S, Naik N, Xu B, Murugadoss V, Huang M, Guo Z (2022) Improving thermal conductivity of polyethylene/polypropylene by styrene-ethylene-propylene-styrene wrapping hexagonal boron nitride at the phase interface. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00438-x

    Article  Google Scholar 

  5. Ouyang L, Huang W, Huang M, Qiu B (2022) Polyaniline improves granulation and stability of aerobic granular sludge. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00450-1

    Article  Google Scholar 

  6. Zhao Y, Liu F, Zhu K, Maganti S, Zhao Z, Bai P (2022) Three-dimensional printing of the copper sulfate hybrid composites for supercapacitor electrodes with ultra-high areal and volumetric capacitances. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-022-00430-5

    Article  Google Scholar 

  7. Liu C, Xu D, Weng J, Zhou S, Li W, Wan Y, Jiang S, Zhou D, Wang J, Huang Q (2020) Phase change materials application in battery thermal management system: a review. Materials (Basel). https://doi.org/10.3390/ma13204622

    Article  Google Scholar 

  8. Zhang F, Cheng W, Yu Z, Ge S, Shao Q, Pan D, Liu B, Wang X, Guo Z (2021) Microwave hydrothermally synthesized WO3/UiO-66 nanocomposites toward enhanced photocatalytic degradation of rhodamine B. Adv Compos Hybrid Mater 4:1330–1342. https://doi.org/10.1007/s42114-021-00346-6

    Article  CAS  Google Scholar 

  9. Sun Z, Qu K, Li J, Yang S, Yuan B, Huang Z, Guo Z (2021) Self-template biomass-derived nitrogen and oxygen co-doped porous carbon for symmetrical supercapacitor and dye adsorption. Adv Compos Hybrid Mater 4:1413–1424. https://doi.org/10.1007/s42114-021-00352-8

    Article  CAS  Google Scholar 

  10. Wen J, Xie J, Chen X, Li X (2017) A review on g-C3N4-based photocatalysts. Appl Surf Sci 391:72–123. https://doi.org/10.1016/j.apsusc.2016.07.030

    Article  CAS  Google Scholar 

  11. Jana S, Mondal A, Ghosh A (2018) Fabrication of stable NiO/Fe2O3 heterostructure: a versatile hybrid material for electrochemical sensing of glucose, methanol and enhanced photodecomposition and/photoreduction of water contaminants. Appl Catal B Environ 232:26–36. https://doi.org/10.1016/j.apcatb.2018.03.038

    Article  CAS  Google Scholar 

  12. Torad N, Hu M, Ishihara S, Sukegawa H, Belik A, Imura M, Ariga K, Sakka Y, Yamauchi Y (2014) Direct synthesis of MOF-derived nanoporous carbon with magnetic Co nanoparticles toward efficient water treatment. Small 10:2096–2107. https://doi.org/10.1002/smll.201302910

    Article  CAS  Google Scholar 

  13. Hu Q, Zhou J, Qiu B, Wang Q, Song G, Guo Z (2021) Synergistically improved methane production from anaerobic wastewater treatment by iron/polyaniline composite. Adv Compos Hybrid Mater 4:265–273. https://doi.org/10.1007/s42114-021-00236-x

    Article  CAS  Google Scholar 

  14. Liu C, Zheng K, Zhou Y, Zhu K, Huang Q (2021) Experimental thermal hazard investigation of pressure and EC/PC/EMC mass ratio on electrolyte. Energies 14:2511. https://doi.org/10.3390/en14092511

    Article  CAS  Google Scholar 

  15. Liu C, Huang Q, Zheng K, Qin J, Zhou D, Wang J (2020) Impact of lithium salts on the combustion characteristics of electrolyte under diverse pressures. Energies 13:5373. https://doi.org/10.3390/en13205373

    Article  CAS  Google Scholar 

  16. Chen L, Zhao Y, Li M, Li L, Hou L, Hou H (2021) Reinforced AZ91D magnesium alloy with thixomolding process facilitated dispersion of graphene nanoplatelets and enhanced interfacial interactions. Mater Sci Eng A 804:140793

    Article  CAS  Google Scholar 

  17. Wu Z, Yuan X, Zhang J, Wang H, Jiang L, Zeng G (2017) Photocatalytic decontamination of wastewater containing organic dyes by metal-organic frameworks and their derivatives. ChemCatChem 9:41–64. https://doi.org/10.1002/cctc.201600808

    Article  CAS  Google Scholar 

  18. Shao Y, Bai H, Wang H, Fei G, Li L, Zhu Y (2021) Magnetically sensitive and high template affinity surface imprinted polymer prepared using porous TiO2-coated magnetite-silica nanoparticles for efficient removal of tetrabromobisphenol A from polluted water. Adv Compos Hybrid Mater. https://doi.org/10.1007/s42114-021-00361-7

    Article  Google Scholar 

  19. Shinde D, Quraishi I, Pawar R (2021) An efficient visible light driven photocatalytic removal of dyes from the dye effluent using metal halide lamp based slurry reactor. ES Energy Environ. https://doi.org/10.30919/esee8c504

  20. Zhu Y, Zhu R, Xi Y, Zhu J, Zhu G, He H (2019) Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review. Appl Catal B Environ 255:117739. https://doi.org/10.1016/j.apcatb.2019.05.041

    Article  CAS  Google Scholar 

  21. Yu H, Liu G, Jin R, Zhou J (2021) Goethite-humic acid coprecipitate mediated Fenton-like degradation of sulfanilamide: the role of coprecipitated humic acid in accelerating Fe(III)/Fe(II) cycle and degradation efficiency. J Hazard Mater 403:124026. https://doi.org/10.1016/j.jhazmat.2020.124026

    Article  CAS  Google Scholar 

  22. Rasheed H, Lv X, Zhang S, Wei W, Ullah N, Xie J (2018) Ternary MIL-100(Fe)@Fe3O4/CA magnetic nanophotocatalysts (MNPCs): magnetically separable and Fenton-like degradation of tetracycline hydrochloride. Adv Powder Technol 29:3305–3314. https://doi.org/10.1016/j.apt.2018.09.011

    Article  CAS  Google Scholar 

  23. Zhu Y, Zhu R, Xi Y, Xu T, Yan L, Zhu J, Zhu G, He H (2018) Heterogeneous photo-Fenton degradation of bisphenol A over Ag/AgCl/ferrihydrite catalysts under visible light. Chem Eng J 346:567–577. https://doi.org/10.1016/j.cej.2018.04.073

    Article  CAS  Google Scholar 

  24. Patra AK, Kundu SK, Bhaumik A, Kim D (2016) Morphology evolution of single-crystalline hematite nanocrystals: magnetically recoverable nanocatalysts for enhanced facet-driven photoredox activity. Nanoscale 8:365–377. https://doi.org/10.1039/c5nr06509g

    Article  CAS  Google Scholar 

  25. Ma Y, Wang B, Wang Q, Xing S (2018) Facile synthesis of α-FeOOH/γ-Fe2O3 by a pH gradient method and the role of γ-Fe2O3 in H2O2 activation under visible light irradiation. Chem Eng J 354:75–84. https://doi.org/10.1016/j.cej.2018.08.011

    Article  CAS  Google Scholar 

  26. Xu J, Li Y, Yuan B, Shen C, Fu M, Cui H, Sun W (2016) Large scale preparation of Cu-doped α-FeOOH nanoflowers and their photo-Fenton-like catalytic degradation of diclofenac sodium. Chem Eng J 291:174–183. https://doi.org/10.1016/j.cej.2016.01.059

    Article  CAS  Google Scholar 

  27. Su S, Liu Y, Liu X, Jin W, Zhao Y (2019) Transformation pathway and degradation mechanism of methylene blue through beta-FeOOH@GO catalyzed photo-Fenton-like system. Chemosphere 218:83–92. https://doi.org/10.1016/j.chemosphere.2018.11.098

    Article  CAS  Google Scholar 

  28. He D, Chen Y, Situ Y, Zhong L, Huang H (2017) Synthesis of ternary g-C3N4/Ag/γ-FeOOH photocatalyst: an integrated heterogeneous Fenton-like system for effectively degradation of azo dye methyl orange under visible light. Appl Surf Sci 425:862–872. https://doi.org/10.1016/j.apsusc.2017.06.124

    Article  CAS  Google Scholar 

  29. Pan X, Gu Z, Chen W, Li Q (2021) Preparation of biochar and biochar composites and their application in a Fenton-like process for wastewater decontamination: a review. Sci Total Environ 754:142104. https://doi.org/10.1016/j.scitotenv.2020.142104

    Article  CAS  Google Scholar 

  30. Guo S, Zhang G, Yu J (2015) Enhanced photo-Fenton degradation of rhodamine B using graphene oxide-amorphous FePO4 as effective and stable heterogeneous catalyst. J Colloid Interface Sci 448:460–466. https://doi.org/10.1016/j.jcis.2015.02.005

    Article  CAS  Google Scholar 

  31. Xu D, Zhang Y, Cheng F, Dai P (2016) Efficient removal of dye from an aqueous phase using activated carbon supported ferrihydrite as heterogeneous Fenton-like catalyst under assistance of microwave irradiation. J Taiwan Inst Chem Eng 60:376–382. https://doi.org/10.1016/j.jtice.2015.10.036

    Article  CAS  Google Scholar 

  32. Yang Z, Yu A, Shan C, Gao G, Pan B (2018) Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes. Water Res 137:37–46. https://doi.org/10.1016/j.watres.2018.03.006

    Article  CAS  Google Scholar 

  33. Fang G, Liu C, Gao J, Dionysiou DD, Zhou D (2015) Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environ Sci Technol 49:5645–5653. https://doi.org/10.1021/es5061512

    Article  CAS  Google Scholar 

  34. Qin Y, Zhang L, An T (2017) Hydrothermal carbon-mediated Fenton-like reaction mechanism in the degradation of alachlor: direct electron transfer from hydrothermal carbon to Fe(III). ACS Appl Mater Interfaces 9:17115–17124. https://doi.org/10.1021/acsami.7b03310

    Article  CAS  Google Scholar 

  35. Xie W, Huang Z, Zhou F, Li Y, Bi X, Bian Q, Sun S (2021) Heterogeneous fenton-like degradation of amoxicillin using MOF-derived Fe0 embedded in mesoporous carbon as an effective catalyst. J Clean Prod 313:127754. https://doi.org/10.1016/j.jclepro.2021.127754

    Article  CAS  Google Scholar 

  36. He J, Zhang Y, Zhang X, Huang Y (2018) Highly efficient Fenton and enzyme-mimetic activities of NH2-MIL-88B(Fe) metal organic framework for methylene blue degradation. Sci Rep 8:5159. https://doi.org/10.1038/s41598-018-23557-2

    Article  CAS  Google Scholar 

  37. Li X, Pi Y, Wu L, Xia Q, Wu J, Li Z, Xiao J (2017) Facilitation of the visible light-induced Fenton-like excitation of H2O2 via heterojunction of g-C3N4/NH2-Iron terephthalate metal-organic framework for MB degradation. Appl Catal B Environ 202:653–663. https://doi.org/10.1016/j.apcatb.2016.09.073

    Article  CAS  Google Scholar 

  38. Cheng M, Lai C, Liu Y, Zeng G, Huang D, Zhang C, Qin L, Hu L, Zhou C, Xiong W (2018) Metal-organic frameworks for highly efficient heterogeneous Fenton-like catalysis. Coord Chem Rev 368:80–92. https://doi.org/10.1016/j.ccr.2018.04.012

    Article  CAS  Google Scholar 

  39. Lv H, Zhao H, Cao T, Qian L, Wang Y, Zhao G (2015) Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework. J Mol Catal A Chem 400:81–89. https://doi.org/10.1016/j.molcata.2015.02.007

    Article  CAS  Google Scholar 

  40. Bag P, Singh G, Singha S, Roymahapatra G (2020) Synthesis of metal-organic frameworks (MOFs) and their applications to biology, catalysis and electrochemical charge storage: a mini review. Eng Sci. https://doi.org/10.30919/es8d1166

  41. Yu H, Xu C, Li Y, Jin F, Ye F, Li X (2020) Performance enhancement of CuO/ZnO by deposition on the metal-organic framework of Cu-BTC for methanol steam reforming reaction. ES Energy Environ. https://doi.org/10.30919/esee8c415

  42. Sun Z, Wu X, Qu K, Huang Z, Liu S, Dong M, Guo Z (2020) Bimetallic metal-organic frameworks anchored corncob-derived porous carbon photocatalysts for synergistic degradation of organic pollutants. Chemosphere 259:127389. https://doi.org/10.1016/j.chemosphere.2020.127389

    Article  CAS  Google Scholar 

  43. Wang L, Mu G, Tian C, Sun L, Zhou W, Yu P, Yin J, Fu H (2013) Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors. Chemsuschem 6:880–889. https://doi.org/10.1002/cssc.201200990

    Article  CAS  Google Scholar 

  44. Wang C, Kim J, Tang J, Na J, Kang YM, Kim M, Lim H, Bando Y, Li J, Yamauchi Y (2020) Large-scale synthesis of MOF-derived superporous carbon aerogels with extraordinary adsorption capacity for organic solvents. Angew Chem Int Ed Engl 59:2066–2070. https://doi.org/10.1002/anie.201913719

    Article  CAS  Google Scholar 

  45. Gopalakrishnan A, Raju TD, Badhulika S (2020) Green synthesis of nitrogen, sulfur-co-doped worm-like hierarchical porous carbon derived from ginger for outstanding supercapacitor performance. Carbon 168:209–219. https://doi.org/10.1016/j.carbon.2020.07.017

    Article  CAS  Google Scholar 

  46. Luo M, Lin H, Li B, Dong Y, He Y, Wang L (2018) A novel modification of lignin on corncob-based biochar to enhance removal of cadmium from water. Bioresour Technol 259:312–318. https://doi.org/10.1016/j.biortech.2018.03.075

    Article  CAS  Google Scholar 

  47. Yang C, You X, Cheng J, Zheng H, Chen Y (2017) A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin. Appl Catal B Environ 200:673–680. https://doi.org/10.1016/j.apcatb.2016.07.057

    Article  CAS  Google Scholar 

  48. Rattanachueskul N, Saning A, Kaowphong S, Chumha N, Chuenchom L (2017) Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process. Bioresour Technol 226:164–172. https://doi.org/10.1016/j.biortech.2016.12.024

    Article  CAS  Google Scholar 

  49. Zhang Q, Zhao D, Ding Y, Chen Y, Li F, Alsaedi A, Hayat T, Chen C (2019) Synthesis of Fe–Ni/graphene oxide composite and its highly efficient removal of uranium(VI) from aqueous solution. J Clean Prod 230:1305–1315. https://doi.org/10.1016/j.jclepro.2019.05.193

    Article  CAS  Google Scholar 

  50. Lv Z, Wang H, Chen C, Yang S, Chen L, Alsaedi A, Hayat T (2019) Enhanced removal of uranium(VI) from aqueous solution by a novel Mg-MOF-74-derived porous MgO/carbon adsorbent. J Colloid Interface Sci 537:A1–A10. https://doi.org/10.1016/j.jcis.2018.11.062

    Article  CAS  Google Scholar 

  51. Wu Q, Siddique MS, Yu W (2021) Iron-nickel bimetallic metal-organic frameworks as bifunctional Fenton-like catalysts for enhanced adsorption and degradation of organic contaminants under visible light: Kinetics and mechanistic studies. J Hazard Mater 401:123261. https://doi.org/10.1016/j.jhazmat.2020.123261

    Article  CAS  Google Scholar 

  52. Xuan C, Peng Z, Xia K, Wang J, Xiao W, Lei W, Gong M, Huang T, Wang D (2017) Self-supported ternary Ni-Fe-P nanosheets derived from metal-organic frameworks as efficient overall water splitting electrocatalysts. Electrochim Acta 258:423–432. https://doi.org/10.1016/j.electacta.2017.11.078

    Article  CAS  Google Scholar 

  53. Srinivas K, Lu Y, Chen Y, Zhang W, Yang D (2020) FeNi3–Fe3O4 heterogeneous nanoparticles anchored on 2D MOF nanosheets/1D CNT matrix as highly efficient bifunctional electrocatalysts for water aplitting. ACS Sustain Chem Eng 8:3820–3831. https://doi.org/10.1021/acssuschemeng.9b07182

    Article  CAS  Google Scholar 

  54. Wang C, Yang H, Zhang Y, Wang Q (2019) NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity. Angew Chem Int Ed Engl 58:6099–6103. https://doi.org/10.1002/anie.201902446

    Article  CAS  Google Scholar 

  55. Yang G, Gao Q, Yang S, Yin S, Cai X, Yu X, Zhang S, Fang Y (2020) Strong adsorption of tetracycline hydrochloride on magnetic carbon-coated cobalt oxide nanoparticles. Chemosphere 239:124831. https://doi.org/10.1016/j.chemosphere.2019.124831

    Article  CAS  Google Scholar 

  56. Yang Z, Xu X, Liang X, Lei C, Wei Y, He P, Lv B, Ma H, Lei Z (2016) MIL-53(Fe)-graphene nanocomposites: efficient visible-light photocatalysts for the selective oxidation of alcohols. Appl Catal B Environ 198:112–123. https://doi.org/10.1016/j.apcatb.2016.05.041

    Article  CAS  Google Scholar 

  57. Qi H, Shi C, Jiang X, Teng M, Sun Z, Huang Z, Pan D, Liu S, Guo Z (2020) Constructing CeO2/nitrogen-doped carbon quantum dot/g-C3N4 heterojunction photocatalysts for highly efficient visible light photocatalysis. Nanoscale 12:19112–19120. https://doi.org/10.1039/d0nr02965c

    Article  CAS  Google Scholar 

  58. Cadranel A, Margraf JT, Strauss V, Clark T, Guldi DM (2019) Carbon nanodots for charge-transfer processes. Acc Chem Res 52:955–963. https://doi.org/10.1021/acs.accounts.8b00673

    Article  CAS  Google Scholar 

  59. Zhang W, Yang S, Jiang M, Hu Y, Hu C, Zhang X, Jin Z (2021) Nanocapillarity and nanoconfinement Effects of pipet-like bismuth@carbon nanotubes for highly efficient electrocatalytic CO2 reduction. Nano Lett 21:2650–2657. https://doi.org/10.1021/acs.nanolett.1c00390

    Article  CAS  Google Scholar 

  60. Shi C, Qi H, Sun Z, Qu K, Huang Z, Li J, Dong M, Guo Z (2020) Carbon dot-sensitized urchin-like Ti3+ self-doped TiO2 photocatalysts with enhanced photoredox ability for highly efficient removal of Cr6+ and RhB. J Mater Chem C 8:2238–2247. https://doi.org/10.1039/c9tc05513d

    Article  CAS  Google Scholar 

  61. Xie L, Yang Z, Xiong W, Zhou Y, Cao J, Peng Y, Li X, Zhou C, Xu R, Zhang Y (2019) Construction of MIL-53(Fe) metal-organic framework modified by silver phosphate nanoparticles as a novel Z-scheme photocatalyst: visible-light photocatalytic performance and mechanism investigation. Appl Surf Sci 465:103–115. https://doi.org/10.1016/j.apsusc.2018.09.144

    Article  CAS  Google Scholar 

  62. Shi J, Chen R, Hao H, Wang C, Lang X (2020) 2D sp2 carbon-conjugated porphyrin covalent organic framework for cooperative photocatalysis with TEMPO. Angew Chem Int Ed Engl 59:9088–9093. https://doi.org/10.1002/anie.202000723

    Article  CAS  Google Scholar 

  63. Zhao H, Xia Q, Xing H, Chen D, Wang H (2017) Construction of pillared-layer MOF as efficient visible-light photocatalysts for aqueous Cr(VI) reduction and dye degradation. ACS Sustain Chem Eng 5:4449–4456. https://doi.org/10.1021/acssuschemeng.7b00641

    Article  CAS  Google Scholar 

  64. Fang Y, Zhu S, Wu M, Zhao W, Han L (2018) MOF-derived In2S3 nanorods for photocatalytic removal of dye and antibiotics. J Solid State Chem 266:205–209. https://doi.org/10.1016/j.jssc.2018.07.026

    Article  CAS  Google Scholar 

  65. Tong X, Yang Z, Feng J, Li Y, Zhang H (2018) BiOCl/UiO-66 composite with enhanced performance for photo-assisted degradation of dye from water. Appl Organomet Chem 32:e4049. https://doi.org/10.1002/aoc.4049

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (No. 32071713), and the Natural Science Funds for Distinguished Young Scholar of Heilongjiang Province (No. JQ2019C001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Houjuan Qi, Zhanhua Huang or Zhanhu Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 928 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Z., Zhang, Y., Guo, S. et al. Confining FeNi nanoparticles in biomass-derived carbon for effectively photo-Fenton catalytic reaction for polluted water treatment. Adv Compos Hybrid Mater 5, 1566–1581 (2022). https://doi.org/10.1007/s42114-022-00477-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00477-4

Keywords

Navigation