Skip to main content
Log in

Indandione oligomer@graphene oxide functionalized nanocomposites for enhanced and selective detection of trace Cr2+ and Cu2+ ions

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Herein, using 1, 3 indandione and three thiophene unit by Suzuki coupling reaction, small organic oligomer–based indandione derivative, 2-(5″-hexyl-[2,2′:5′2″ terthiophen]-5-yl) methylene)-1H-indene-1,3(2H) dione oligomer (HTD) was synthesized. A functional and highly effective nanocomposite based on the synthesized HTD oligomer and graphene oxide (GO) was further synthesized and utilized to fabricate high-sensitive and selective chemical sensor. The synthesized HTD@GO functionalized nanocomposites were further examined by several techniques and finally coated on the glassy carbon electrode (GCE) to fabricate the chemical sensor. Due to the synergistic impacts of HTD oligomer and GO, the functionalized HTD@GO nanocomposite exhibited outstanding physiochemical, structural, and surface characteristics. Thus, using an electrochemical method, the HTD@GO/GCE sensor probe demonstrated the outstanding simultaneous trace detection of heavy metals such as Cr2+ and Cu2+ ions. The HTD@GO/GCE sensor probe revealed a strong selectivity towards Cr2+ and Cu2+ ions when compared to other metal ions (Al3+, Zn2+, K+, Mn2+). Importantly, the HTD@GO/GCE-based sensor exhibited relatively good dynamic linear ranges of 1–100 µM and detection limit values of ~3.65 μM and ~2.25 μM, respectively, for trace Cr2+ and Cu2+ ions. The HTD@GO/GCE sensor probe has low relative standard deviations (RSDs) of ~10% and ~6.4% for Cr2+ and Cu2+ ions, respectively, as suggested by the repeatability test. Analyzing actual water samples was also used to test the reliability of the functionalized nanocomposite sensor.

Graphical abstract

HTD@GO/GCE-based-sensor presents good detection limit values of ~3.65 μM and ~2.25 μM with excellent linear dynamic for Cr2+ and Cu2+ ions, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim EB, Imran M, Akhtar MS, Shin HS, Ameen S (2021) Enticing 3D peony-like ZnGa2O4 microstructures for electrochemical detection of N, N-dimethylmethanamide chemical. J Hazar Mater 404:124069

    Article  CAS  Google Scholar 

  2. Rahman MA, Park DS, Shim YB, Kumar P (2008) Electrochemical sensors based on organic conjugated polymers. Sensors 8:118–141

    Article  CAS  Google Scholar 

  3. Guo J, Li X, Liu H, Young DP, Song G, Song K, Zhu J, Kong J, Guo Z (2021) Tunable magnetoresistance of core-shell structured polyaniline nanocomposites with 0-, 1-, and 2-dimensional nanocarbons. Adv Composites Hybrid Mater 4:51–64

    Article  CAS  Google Scholar 

  4. Chen J, Zhu Y, Guo Z, Nasibulin AG (2020) Recent progress on thermo-electrical properties of conductive polymer composites and their application in temperature sensors. Eng Sci 12:13–22

    CAS  Google Scholar 

  5. Rehman S, Ahmed R, Ma K, Xu S, Tao T, Aslam MA, Wang AM (2021) J composite of strip-shaped ZIF-67 with polypyrrole: a conductive polymer-MOF electrode system for stable and high specific capacitance. Eng Sci 13:11–23

    Google Scholar 

  6. Elayappan V, Murugadoss V, Fei Z, Angaiah DPJ, S, (2020) Influence of polypyrrole incorporated electrospun poly(vinylidene fluoride-co-hexafluoropropylene) nanofibrous composite membrane electrolyte on the photovoltaic performance of dye sensitized solar cell. Eng Sci 1:78–84

    Google Scholar 

  7. Guo J, Chen Z, Abdul W, Kong J, Khan MA, Young DP, Zhu J, Guo Z (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Advan Comp Hybrid Mater 4:534–542

    Article  CAS  Google Scholar 

  8. Guo J, Li X, Chen Z, Zhu J, Mai X, Wei R, Sun K, Liu H, Chen Y, Naik N, Guo Z (2022) Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72

    Article  Google Scholar 

  9. Park MO, Seo KD, Shim YB, Yoon JH, Park DS (2019) Chromium (VI) sensor based on catalytic reduction using the nanoporous layer of poly (aminopyrimidyl-terthiophene) and AuNi composite. Sen Act B: Chem 301:127151–127159

    Article  CAS  Google Scholar 

  10. Choi SM, Kim DM, Jung OS, Shim YB (2015) A disposable chronocoulometric sensor for heavy metal ions using a diaminoterthiophene-modified electrode doped with graphene oxide. Anal Chim Acta 892:77–84

    Article  CAS  Google Scholar 

  11. Lee WC, Kim KB, Gurudatt NG, Hussain KK, Choi CS, Park DS, Shim YB (2019) Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer. Biosen Bioelectr 130:48–54

    Article  CAS  Google Scholar 

  12. Srivani D, Gupta A, Bhosale SV, Puyad AL, Xiang W, Li J, Evansf RA (2017) Non-fullerene acceptors based on central naphthalene diimide flanked by rhodamine or 1,3-indanedione. Chem Comm 53:7080–7083

    Article  CAS  Google Scholar 

  13. Razzaque S, Wang K, Hussain I, Tan B (2019) Facile synthesis of hyper crosslinked hollow microporous organic capsules for electrochemical sensing of Cu(II) ions. Chem Eur J 25:548–555

    CAS  Google Scholar 

  14. Nordberg GF, Fowler BA, Nordberg M, Friberg L (2007) Handbook on the toxicology of metals, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  15. Ramalingam S, Subramania A (2021) Effective removal of nitrates from the drinking water by chemical and electrochemical methods. Eng Sci 15:80–88

    CAS  Google Scholar 

  16. Al-Zhrani S, Bedaiwi NM, El-Ramli IF, Barasheed AZ, Abduldaiem A, Al-Hadeethi Y, Umar, (2021) A underwater optical communications: a brief overview and recent developments. Eng Sci 16:146–186

    Google Scholar 

  17. Lu YY, Liang XQ, Xu JM, Zhao ZY, Tian GM (2018) Synthesis of CuZrO3 Nanocomposites/Graphene and their application in modified electrodes for the Co-detection of trace Pb(II) and Cd(II). Sens Actuat B: Chem 273:1146–1155

    Article  CAS  Google Scholar 

  18. Nidamanuri N, Li Y, Li Q, Dong M (2020) Graphene and graphene oxide-based membranes for gas separation. Eng Sci 9:3–16

    CAS  Google Scholar 

  19. Moradi O, Madanpisheh MA, Moghaddas M (2021) Synthesis of GO/HEMA, GO/ HEMA/TiO2, and GO/Fe3O4/HEMA as novel nanocomposites and their dye removal ability. Adv Compos Hybrid Mater 4:1185–1204

    Article  CAS  Google Scholar 

  20. Aggrwal G, Salunke-Gawali S, Gejji SP, Nikalje M, Chakravarty D, Verma PL, Gosavi-Mirkute P, Harihar S, Jadhav M, Puranik VG (2021) Reactions of 2, 3-dibromonaphthalene-1, 4-dione and pyridyl amines: X-ray structures, DFT investigations, and selective detection of the Hg2+ and Ni2+ Ions. Eng Sci 14:78–93

    CAS  Google Scholar 

  21. Hamilton MA, Rode PW, Merchant ME, Sneddon J (2008) Determination and comparison of heavy metals in selected seafood, water, vegetation and sediments by inductively coupled plasma-optical emission spectrometry from an industrialized and pristine waterway in Southwest Louisiana. Micro Chem J 88:52–55

    Article  CAS  Google Scholar 

  22. Sen I, Shandil A, Shrivastava VS (2011) Study for determination of heavy metals in fish species of the River Yamuna (Delhi) by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Adv In App Sci Res 2:161–166

    CAS  Google Scholar 

  23. Pizarro J, Segura R, Tapi D, Navarr F, Fuenzalid F, Aguirre MJ (2020) Inexpensive and green electrochemical sensor for the determination of Cd (II) and Pb (II) by square wave anodic stripping voltammetry in bivalve mollusks. Food Chem 321:126682

    Article  CAS  Google Scholar 

  24. Lu M, Deng Y, Luo Y, Lv J, Li T, Xu J, Chen SW, Wang J (2019) Graphene aerogelmetal- organic framework-based electrochemical method for simultaneous detection of multiple heavy-metal ions. Anal Chem 91:888–895

    Article  CAS  Google Scholar 

  25. Pooja S, Laiju RK, Utkarsh C, Chandrakala CB (2021) Face detection using deep learning to ensure a coercion resistant blockchain-based electronic voting. Eng Sci 16:341–353

    Google Scholar 

  26. Hong J, Kang L, Shi X, Wei R, Mai X, Pan D, Naik N, Guo Z (2022) Highly efficient removal of trace lead (II) from wastewater by 1,4-dicarboxybenzene modified Fe/Co metal organic nanosheets. J Mater Sci Technol 98:212–218

    Article  Google Scholar 

  27. Adraoui I, Rhazi ME, Amine A, Idrissi L, Curulli A, Palleschi G (2005) Modulation of electrical properties in single-walled carbon nanotube/conducting polymer composites. Electroanalysis 17:685–693

    Article  CAS  Google Scholar 

  28. Renaudin SG, Moreau M, Despas C, Meyer M, Denat F, Lebeau B, Walcarius A (2009) Voltammetric detection of Pb (II) using amide-cyclam-functionalized silica-modified carbon paste electrodes. Electroanalysis 21:1731–1742

    Article  CAS  Google Scholar 

  29. Armstrong KC, Tatum CE, Chambers RND, Sparks JQ, Xue ZL (2010) Individual and simultaneous determination of lead, cadmium, and zinc by anodic stripping voltammetry at a bismuth bulk electrode. Talanta 82:675–680

    Article  CAS  Google Scholar 

  30. Wang X, Qi Y, Shen Y, Yuan Y, Zhang L, Zhang C, Sun Y (2020) A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework. Sen Actuat B: Chem 310:127756–127769

    Article  CAS  Google Scholar 

  31. Xu Z, Liu Z, Xiao M, Jiang L, Yi C (2020) A smartphone-based quantitative point-of-care testing (POCT) system for simultaneous detection of multiple heavy metal ions. Chem Eng J 394:124966–124975

    Article  CAS  Google Scholar 

  32. Suvina V, Krishna SM, Nagaraju DH, Melo JS, Balakrishna RG (2018) Polypyrrole-reduced graphene oxide nanocomposite hydrogels: a promising electrode material for the simultaneous detection of multiple heavy metal ions. Mater Lett 232:209–212

    Article  CAS  Google Scholar 

  33. Peng QM, Guo JX, Zhang QR, Xiang JY, Liu BZ, Zhou AG, Liu RP, Tian YJ (2014) Unique lead adsorption behavior of activated hydroxyl group in two dimensional titanium carbide. J Am Chem Soc 136:4113–4116

    Article  CAS  Google Scholar 

  34. Deng W, Tan Y, Fang Z, Xie Q, Li Y, Liang X, Yao S (2009) ABTS-multiwalled carbon nanotubes nanocomposite/Bi film electrode for sensitive determination of Cd and Pb by differential pulse stripping voltammetry. Electroanalysis 21:2477–2485

    CAS  Google Scholar 

  35. Zhang DC, Zhang X, Chen Y, Yu P, Wang CH, Ma YW (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sour 196:5990–5996

    Article  CAS  Google Scholar 

  36. Alam S, Akhtar MS, Abdullah KEB, Shin HS, Ameen S (2020) New energetic indandione based planar donor for stable and efficient organic solar cells. Sol Energy 201:649–657

    Article  CAS  Google Scholar 

  37. Ameen S, Akhtar MS, Seo HK, Shin HS (2014) ZnO quantum dots engrafted graphene oxide thin film electrode for low level detection of ethylacetate. Mater Lett 136:379–383

    Article  CAS  Google Scholar 

  38. Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio) porphyrin and its application for optical detection of cadmium (II) ions. J Am Chem Soc 130:5856–5857

    Article  CAS  Google Scholar 

  39. Gupta V, Lai LF, Datt R, Chand S, Heeger AJ, Bazan GC, Singh SP (2016) Dithienogermole-based solution-processed molecular solar cells with efficiency over 9 %. Chem Comm 52:8596–8599

    Article  CAS  Google Scholar 

  40. Venugopal GD, Krishnamoorthy K, Mohan R, Kim SJ (2012) An investigation of the electrical transport properties of graphene-oxide thin films. Mat Chem Phys 132:29–33

    Article  CAS  Google Scholar 

  41. Wang H, Hao Q, Yang X, Lu L, Wang X (2010) Effect of graphene oxide on the properties of its composite with polyaniline. ACS Appl Mater Inter 2:821–828

    Article  CAS  Google Scholar 

  42. Revoju S, Biswas S, Eliasson B, Sharma GD (2018) Effect of acceptor strength on optical, electrochemical and photovoltaic properties of phenothiazine-based small molecule for bulk heterojunction organic solar cells. Dyes Pigm 149:830–842

    Article  CAS  Google Scholar 

  43. Perjéssy A, Hrnčiar P (1971) The C=O stretching bands of 1,3-indandione derivatives. Tetrahedron 27:6159–6169

    Article  Google Scholar 

  44. Kaneti J, Yuchnovski I (1970) Electronic substituent effects and carbonyl stretching frequencies of 2-arylmethylene-1, 3-indandiones. Tetrahedron 26:4397–4402

    Article  CAS  Google Scholar 

  45. Bera M, Chandravati GP, Maji PK (2018) Facile one-pot synthesis of graphene oxide by sonication assisted mechanochemical approach and its surface chemistry. J Nanosci Nanotech 18:902–912

    Article  CAS  Google Scholar 

  46. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107

    Article  CAS  Google Scholar 

  47. Cancado LG, Pimenta MA, Neves BRA, Dantas MSS, Jorio A (2004) Influence of the atomic structure on the Raman spectra of graphite edges. Phys Rev Lett 93:247401–247405

    Article  CAS  Google Scholar 

  48. Ameen S, Akhtar MS, Shin HS (2012) Hydrazine chemical sensing by modified electrode based on in situ electrochemically synthesized polyaniline/graphene composite thin film. Sens Actuat B: Chem 173:177–183

    Article  CAS  Google Scholar 

  49. Tang L, Wang Y, Li Y, Feng H, Lu J, Li J (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19:2782–2789

    Article  CAS  Google Scholar 

  50. Akhavan O (2010) The effect of heat treatment on formation of graphene thin films from graphene oxide. Carbon 48:509–519

    Article  CAS  Google Scholar 

  51. Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, Stankovich S, Jung I, Field DA, Ventrice CA, Ruoff RS (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 47:145–152

    Article  CAS  Google Scholar 

  52. Ye J, He F, Nie J, Cao Y, Yang H, Ai X (2015) Sulfur/carbon nanocomposite-filled polyacrylonitrile nanofibers as a long life and high capacity cathode for lithium-sulfur batteries. J Mater Chem A 3:7406–7412

    Article  CAS  Google Scholar 

  53. Wang X, Gao T, Han F, Ma Z, Zhang Z, Li J, Wang C (2016) Stabilizing high sulfur loading Li–S batteries by chemisorption of polysulfide on three-dimensional current collector. Nano Ener 30:700–708

    Article  CAS  Google Scholar 

  54. Lee EJH, Zhi LJ, Burghard M, Mullen K, Kern K (2010) Electrical properties and photoconductivity of stacked-graphene carbon nanotubes. Adv Mat 22:1854–1857

    Article  CAS  Google Scholar 

  55. Pizarro J, Segura R, Tapia D, Navarro F, Fuenzalida F, Aguirre MJ (2020) Inexpensive and green electrochemical sensor for the determination of Cd (II) and Pb (II) by square wave anodic stripping voltammetry in bivalve mollusks. Food Chem 321:126682

    Article  CAS  Google Scholar 

  56. Oztekin Y, Ramanaviciene A, Ramanavicius A (2011) Electrochemical copper (II) sensor based on self-assembled 4-amino-6-hydroxy-2-mercaptopyrimidine monohydrate. Sens Actuat B Chem 155:612–617

    Article  CAS  Google Scholar 

  57. Yasri NG, Halabi AJ, Istamboulie G, Noguer T (2011) Chronoamperometric determination of lead ions using PEDOT:PSS modified carbon electrodes. Talanta 85:2528–2533

    Article  CAS  Google Scholar 

  58. Traore D, Abdelaziz ASM, Brou YS, Trokourey A (2014) Determination of Cu2+ by N, N-dichromone-p-phenylenediamine modified carbon paste electrode. Int J Biol Chem Sci 8:2773–2785

    Article  CAS  Google Scholar 

  59. Wang Z, Liu E, Zhao X (2011) Glassy carbon electrode modified by conductive polyaniline coating for determination of trace lead and cadmium ions in acetate buffer solution. Thin Solid Films 519:5285–5289

    Article  CAS  Google Scholar 

  60. Li Y, Shi Z, Zhang C, Wu X, Liu L, Guo C, Li CM (2021) Highly stable branched cationic polymer-functionalized black phosphorus electrochemical sensor for fast and direct ultratrace detection of copper ion. J Colloi Interf Sci 603:131–140

    Article  CAS  Google Scholar 

  61. Syed A, Marraiki N, Al-Rashed S, Elgorban AM, Yassin MT (2021) A potent multifunctional MnS/Ag-polyvinylpyrrolidone nanocompositefor enhanced detection of Hg2+ from aqueous samples and itsphotocatalytic and antibacterial applications. Spectrochim Acta Mol Biomol Spectrosc 244:118844

    Article  CAS  Google Scholar 

  62. Rahman MM, Alamry KA, Awual MR, Mekky AEM (2020) Efficient Hg(II) ionic probe development based on one-step synthesized diethyl thieno[2, 3-b]thiophene-2, 5-dicarboxylate (DETTDC2) onto glassy carbon electrode. Microchem J 152:104291

    Article  CAS  Google Scholar 

  63. Yi W, He Z, Fei J, He X (2019) Sensitive electrochemical sensor based on poly(L-glutamic acid)/graphene oxide composite materialfor simultaneous detection of heavy metal ions. RSC Adv 9:17325–17334

    Article  CAS  Google Scholar 

  64. Hashemi SA, Bahrani S, Mousavi SM, Omidifar N, Arjmand M, Lankarani KB, Ramakrishna S (2022) Simultaneous electrochemical detection of Cd and Pb in aquatic samples via coupled graphene with brominated white polyaniline flakes. Euro Polym J 162:110926

    Article  CAS  Google Scholar 

Download references

Funding

This research is supported by Korea Basic Science Institute under the R&D program (Project No. D010710) supervised by the Ministry of Science and ICT. This work was also supported by the national research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) No-2019R1F1063999. E. B. Kim also received research grant from NRF Korea (Project No.: 2020R1A6A3A13070611). This paper was supported by the selection of research oriented professor of Jeonbuk National University in 2021. This paper is supported by the research funds of Jeonbuk National University in 2021.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Shaheer Akhtar or Sadia Ameen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 351 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, EB., Imran, M., Umar, A. et al. Indandione oligomer@graphene oxide functionalized nanocomposites for enhanced and selective detection of trace Cr2+ and Cu2+ ions. Adv Compos Hybrid Mater 5, 1582–1594 (2022). https://doi.org/10.1007/s42114-022-00428-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00428-z

Keywords

Navigation