Skip to main content
Log in

Thermal degradation kinetics of epoxy resin modified with elastomeric nanoparticles

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Ultra-fine full-vulcanized acrylonitrile butadiene rubber (UFNBRP) or elastomeric nanoparticles has emerged as a new type of toughness modifier in polymer-based systems. In the present research, the thermal stability and thermal degradation kinetics of prepared epoxy nanocomposites were assessed through thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) at various heating rates of 10, 15, and 20 °C/min. Epoxy nanocomposites were prepared via the incorporation of elastomeric nanoparticles with a content of 0.5, 1, and 1.5 wt.%. The results showed that by adding elastomeric nanoparticles to epoxy resin, the maximum thermal degradation temperature increased. Kissinger–Akahira–Sunose (KAS), Kimpark, Starink, Ozawa, and Coates-Redfern models were used to investigate the thermal degradation kinetic. The presence of 0.5 wt.% elastomeric nanoparticles to epoxy resin increased the activation energy (Ea) of pure epoxy resin and enhanced the nanocomposites’ thermal stability. According to the master curves, the results showed that the epoxy resin had a similar kinetic mechanism to 0.5 and 1 wt.% nanocomposites.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen X et al (2021) Effects of graphene oxide size on curing kinetics of epoxy resin. RSC Advances 11(47):29215–29226

    Article  CAS  Google Scholar 

  2. Ghomi ER et al (2020) Development of an epoxy self-healing coating through the incorporation of acrylic acid-co-acrylamide copolymeric gel. Prog Org Coat 149:105948

  3. Ghomi ER et al (2020) Synthesis and characterization of TiO2/acrylic acid-co-2-acrylamido-2-methyl propane sulfonic acid nanogel composite and investigation its self-healing performance in the epoxy coatings. Colloid and Polymer Science 298(2):213–223

    Article  CAS  Google Scholar 

  4. Li H et al (2021) Mechanism identification and kinetics analysis of thermal degradation for carbon fiber/epoxy resin. Polymers 13(4):569

    Article  Google Scholar 

  5. Qiao J (2020) Elastomeric nano-particle and its applications in polymer modifications. Advanced Industrial and Engineering Polymer Research 3(2):47–59

    Article  Google Scholar 

  6. Yeasmin F et al (2021) Remarkable enhancement of thermal stability of epoxy resin through the incorporation of mesoporous silica micro-filler. Heliyon 7(1):e05959

  7. Lee JY, Shim MJ, Kim SW (2001) Thermal decomposition kinetics of an epoxy resin with rubber-modified curing agent. Journal of Applied Polymer Science 81(2):479–485

    Article  CAS  Google Scholar 

  8. Aghajani A, Kalaee M, Mazinani S (2019) Physical, mechanical and thermal properties of epoxy coatings modified with nitrile-butadiene nano-rubber. Advanced Materials and New Coatings 7(28):2036–2047

  9. Zabihi O, Ghasemlou S (2012) Nano-CuO/epoxy composites: thermal characterization and thermo-oxidative degradation. International Journal of Polymer Analysis and Characterization 17(2):108–121

    Article  CAS  Google Scholar 

  10. Zabihi O et al (2015) Enhanced thermal stability and lifetime of epoxy nanocomposites using covalently functionalized clay: experimental and modelling. New J Chem 39(3):2269–2278

    Article  CAS  Google Scholar 

  11. Pistor V et al (2012) Degradation kinetic of epoxy nanocomposites containing different percentage of epoxycyclohexyl—POSS. Polymer Composites 33(7):1224–1232

    Article  CAS  Google Scholar 

  12. Aradhana R, Mohanty S, Nayak SK (2018) High performance epoxy nanocomposite adhesive: effect of nanofillers on adhesive strength, curing and degradation kinetics. Int J Adhes Adhes 84:238–249

    Article  CAS  Google Scholar 

  13. Zhao Q et al (2013) Highly efficient toughening effect of ultrafine full-vulcanized powdered rubber on poly(lactic acid)(PLA). Polym Test 32(2):299–305

    Article  CAS  Google Scholar 

  14. Ali-Asgari Dehaghi H et al (2013) Thermal and morphological characteristics of solution blended epoxy/NBR compound. J Therm Anal Calorim 114(1):185–194

    Article  CAS  Google Scholar 

  15. Jouyandeh M et al (2020) Thermal-resistant polyurethane/nanoclay powder coatings: degradation kinetics study. Coatings 10(9)

  16. Vyazovkin S, Burnham A, Criado J (2021) LA, Perez-Maqueda, C. Popescu, and N. Sbirrazzuoli. Thermochim. Acta 520:1–19

  17. Nayak L et al (2018) Thermal degradation kinetics of polyimide nanocomposites from different carbon nanofillers: applicability of different theoretical models. J Appl Polym Sci 135(7):45862

    Article  Google Scholar 

  18. Hadavand BS et al (2020) Silane-functionalized Al2O3-modified polyurethane powder coatings: nonisothermal degradation kinetics and mechanistic insights. J Appl Polym Sci 137(45):49412

    Article  CAS  Google Scholar 

  19. Xu J et al (2019) Curing kinetics and thermal stability of novel siloxane-containing benzoxazines. Thermochimica Acta 671:119–126

    Article  CAS  Google Scholar 

  20. Tiwari S et al (2021) Simulation of the thermal degradation and curing kinetics of fly ash reinforced diglycidyl ether bisphenol A composite. J Indian Chem Soc 98(6):100077

  21. Zabihi O, Omrani A, Rostami AA (2012) Thermo-oxidative degradation kinetics and mechanism of the system epoxy nanocomposite reinforced with nano-Al2O3. J Therm Anal Calorim 108(3):1251–1260

    Article  CAS  Google Scholar 

  22. Franco-Urquiza EA et al (2020) Thermal degradation kinetics of ZnO/polyester nanocomposites. Polymers 12(8)

  23. Jafari I et al (2021) Thermal degradation kinetics and modeling study of ultra high molecular weight polyethylene (UHMWP)/graphene nanocomposite. Molecules 26(6)

  24. Karami MH, Kalaee MR (2021) Review of curing kinetics of epoxy nanocomposites in the presence of iron oxide nanoparticles. Polymerization. https://doi.org/10.22063/BASPARESH.2021.2824.1537

    Article  Google Scholar 

  25. Wang J et al (2019) Advances in toughened polymer materials by structured rubber particles. Prog Polym Sci 98:101160

  26. Seidi F et al (2020) Super-crosslinked ionic liquid-intercalated montmorillonite/epoxy nanocomposites: cure kinetics, viscoelastic behavior and thermal degradation mechanism. Polymer Engineering & Science 60(8):1940–1957

    Article  CAS  Google Scholar 

  27. Paran SMR et al (2019) Thermal decomposition kinetics of dynamically vulcanized polyamide 6–acrylonitrile butadiene rubber–halloysite nanotube nanocomposites. J Appl Polym Sci 136(20):47483

    Article  Google Scholar 

  28. Karami MH, Kalaee MR (2021) Review of degradation kinetics of epoxy nanocomposites in the presence of clay nanoparticles. Polymerization. https://doi.org/10.22063/BASPARESH.2021.2895.1552

  29. Vahabi H et al (2020) 3-Halloysite nanotubes (HNTs)/polymer nanocomposites: thermal degradation and flame retardancy, in Clay Nanoparticles, G. Cavallaro, R. Fakhrullin, and P. Pasbakhsh, Editors. Elsevier. p 67–93

  30. Parthasarathy V et al (2020) Structural, optical, thermal and non-isothermal decomposition behavior of PMMA nanocomposites. J Inorg Organomet Polym Mater 30(8):2998–3013

    Article  CAS  Google Scholar 

  31. Sánchez-Jiménez PE et al (2021) Predictions of polymer thermal degradation: relevance of selecting the proper kinetic model. J Therm Anal Calorim

  32. Karami MH, Kalaee MR (2021) Study of thermal degradation kinetics of epoxy composite / carbon nanotubes. Polymerization. https://doi.org/10.22063/BASPARESH.2021.3017.1591

    Article  Google Scholar 

  33. Karthikeyan L et al (2021) Non-isothermal cure and decomposition kinetics of hydroxyl and propargyl functional poly (ether ether ketone): epoxy resins. J Therm Anal Calorim

  34. Pérez-Maqueda LA et al (2002) Advantages of combined kinetic analysis of experimental data obtained under any heating profile. J Phys Chem A 106(12):2862–2868

    Article  Google Scholar 

  35. Karami MH et al (2021) Thermal Stability and thermal degradation of epoxy nanocomposite in the Presence of full vulcanized elastomeric nano particles. Advanced Materials & Novel Coatings 10:2758-2770

  36. Fina A et al (2006) Polyhedral oligomeric silsesquioxanes (POSS) thermal degradation. Thermochimica Acta 440(1):36–42

    Article  CAS  Google Scholar 

  37. Nassaj Z et al (2021) Thermal stability, degradation kinetic and electrical properties studies of decorated graphene oxide with CeO2 nanoparticles-reinforced epoxy coatings. Fullerenes, Nanotubes and Carbon Nanostructures 29(6):446–456

    Article  CAS  Google Scholar 

  38. Habibi A, De Wilde J (2007) Kinetic modeling of the thermal degradation of methacrylate copolymers by thermogravimetric methods. Int J Chem React Eng 5(1)

  39. Vyazovkin S, Sbirrazzuoli N (2006) Isoconversional kinetic analysis of thermally stimulated processes in polymers. Macromolecular Rapid Communications 27(18):1515–1532

    Article  CAS  Google Scholar 

  40. Wu H, Zhong Y, Tang Y et al (2021) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Advanced Composites and Hybrid Materials. https://doi.org/10.1007/s42114-021-00378-y

    Article  Google Scholar 

  41. Qi G, Liu Y, Chen L et al (2021) Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Hybrid Mater 4:1226–1238

    Article  CAS  Google Scholar 

  42. Jing X, Wei J et al (2020) Deployment analysis of aramid fiber reinforced shape memory epoxy resin composites. Engineered Science 11:44–53

  43. Zhang Y, Zhan L (2020) Preparation and damping properties of Al2O3 hollow spheres/epoxy composites encapsulating Q195 steel pipes. ES Materials and Manufacturing 10:60–66

    CAS  Google Scholar 

  44. Guo J, Chen Z, Abdul W et al (2021) Tunable positive magnetoresistance of magnetic polyaniline nanocomposites. Advanced Composites and Hybrid Materials 4:534–542

    Article  CAS  Google Scholar 

  45. Guo J, Li X et al (2022) Magnetic NiFe2O4/Polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J Mater Sci Technol 108:64–72

    Article  Google Scholar 

  46. Lu X et al (2020) Influence of temperature on mechanical properties and machining of fibre reinforced polymer composites: a review. Engineered Science 9:25–34

    CAS  Google Scholar 

  47. Zhang X (2021) Applications of kinetic methods in thermal analysis: a review. Eng Sci 14:1–13

  48. Shahabaz SM et al (2021) Influence of temperature on mechanical properties and machining of fibre reinforced polymer composites: a review. Engineered Science 16:28–46

  49. Wang J et al (2018) Enhancing dielectric performance of poly(vinylidene fluoride) nanocomposites via controlled distribution of carbon nanotubes and barium titanate nanoparticles. Engineered Science 4:79–86 

  50. Panneerselvam P et al (2018) Influence of anti-reflecting nature of MgF embedded electrospun TiO nanofibers 2 2 based photoanode to improve the photoconversion efficiency of DSSC. ES Energy and Environment 1:99–105

  51. Wei H et al (2018) Sustainable cross-linked porous corn starch adsorbents with high methyl violet adsorption. ES Energy and Environment 2:28–34

  52. Lin C et al (2019) Highly efficient fluoride adsorption in domestic water with RGO/Ag nanomaterials. ES Energy and Environment 4:27–33

  53. Pan D et al (2021) Research progress on catalytic pyrolysis and reuse of waste plastics and petroleum sludge. ES Energy and Environment 11:3–15

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadreza Kalaee.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karami, M.H., Kalaee, M., Khajavi, R. et al. Thermal degradation kinetics of epoxy resin modified with elastomeric nanoparticles. Adv Compos Hybrid Mater 5, 390–401 (2022). https://doi.org/10.1007/s42114-022-00419-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-022-00419-0

Keywords

Navigation