Skip to main content
Log in

Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

To tackle the challenges of insufficient heat conduction capacity and thermally/mechanically induced internal damages of glass fiber reinforced epoxy composite (that traditionally serves as circuit board substrate), hexagonal boron nitride (h-BN) was functionalized using natural flavonoid dihydromyricetin (DMY) and then compounded with reversible Diels–Alder (DA) bonds crosslinked epoxy and glass fiber cloth (GFC) reinforcement to fabricate self-healing thermally conductive glass fiber cloth reinforced epoxy (GFREP) composite by a facile two-step coating method. Particularly, the GFC was coated with the solution containing high concentration modified h-BN, and then impregnated with dip coating solution containing lower concentration h-BN. The gradient variation of modified h-BN concentration not only effectively reduced the interfacial heat resistance, but also avoided excessive deterioration of mechanical strength. The produced GFREP composite exhibited excellent in-plane (6.22 W m−1 K−1) and through-plane (1.53 W m−1 K−1) thermal conductivities at 35.0 wt% h-BN content. The reversible DA reaction helped to realize interlaminar crack healing of the composite as characterized by high degrees of recovery of mechanical strength (70 ~ 85%) and thermal conductivities (62 ~ 89%). Besides, the attenuated thermal conductivity caused by interfacial debonding between copper clad and the composite in the model copper clad laminates can also be restored via the same mechanism. Lastly, the composite laminates proved to be coupled with controlled degradability in good solvent so that they can be recycled. This study offered an efficient way to prolong the service life of thermally conductive GFREP composite for integrated circuit packaging applications.

Graphical abstract

The reversible DA reaction at the crack interface proves to be able to recover the structural integrity, which pushes the physical reconnection of the separated h-BN micron sheets residing on the fractured surfaces at the same time and re-establishes the continuous phonon transfer pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen C (2016) Thermal conductivity of polymer-based composites: ffundamentals and applications. Prog Polym Sci 59:41–85

    Article  CAS  Google Scholar 

  2. Qin TF, Wang H, He J, Qu QQ, Da YS, Chen XY (2020) Amino multi-walled carbon nanotubes further improve the thermal conductivity of boron nitride/liquid crystal epoxy resin composites. Express Polym Lett 14:1169–1179

    Article  CAS  Google Scholar 

  3. Huang TQ, Li YW, Chen M, Wu LM (2020) Bi-directional high thermal conductive epoxy composites with radially aligned boron nitride nanosheets lamellae. Compos Sci Technol 198:108322/1–9

  4. Wu XF, Tang B, Chen J, Shan LM, Gao Y, Yang K, Wang Y, Sun K, Fan RH, Yu JH (2021) Epoxy composites with high cross-plane thermal conductivity by constructing all-carbon multidimensional carbon fiber/graphite networks. Compos Sci Technol 203:108610/1–8

  5. Yao Y, Zeng X, Guo K, Sun R, Xu JB (2015) The effect of interfacial state on the thermal conductivity of functionalized Al2O3 filled glass fibers reinforced polymer composites. Compos Part A 69:49–55

    Article  CAS  Google Scholar 

  6. Li C, Guo K, Zeng X, Zhu D, Sun R (2019) Preparation and properties of liquid crystal epoxy/boron nitride nanosheet/glass fiber three–phase composites. J Integr Technol 8:45–53

    Google Scholar 

  7. Zhang R, Shi X, Tang L, Liu Z, Zhang J, Guo Y, Gu J (2020) Thermally conductive and insulating epoxy composites by synchronously incorporating Si-sol functionalized glass fibers and boron nitride fillers. Chin J Polym Sci 8:730–739

    Article  CAS  Google Scholar 

  8. Assael MJ, Antoniadis KD, Metaxa IN, Tzetzis D (2008) Measurements on the enhancement of the thermal conductivity of an epoxy resin when reinforced with glass fiber and carbon multiwalled nanotubes. J Chem Eng Data 54:2365–2370

    Article  Google Scholar 

  9. Lafont U, van Zeijl H, van der Zwaag S (2012) Increasing the reliability of solid state lighting systems via self-healing approaches: a review. Microelectron Reliab 52:71–89

    Article  Google Scholar 

  10. Tang L, He M, Na X, Guan X, Zhang R, Zhang J, Gu J (2019) Functionalized glass fibers cloth/spherical BN fillers/epoxy laminated composites with excellent thermal conductivities and electrical insulation properties. Compos Commun 16:5–10

    Article  Google Scholar 

  11. Zhang J, Qi S (2014) Mechanical, thermal, and dielectric properties of aluminum nitride/glass fiber/epoxy resin composites. Polym Compos 35:381–385

    Article  CAS  Google Scholar 

  12. Zhang J, Qi S (2014) Preparation and properties of silicon nitride/glass fiber/epoxy composites. Polym Compos 35:1338–1342

    Article  CAS  Google Scholar 

  13. Ge M, Zhang J, Zhao C, Lu C, Du G (2019) Effect of hexagonal boron nitride on the thermal and dielectric properties of polyphenylene ether resin for high-frequency copper clad laminates. Mater Design 182:108028/1–9

  14. Lafont U, Moreno-Belle C, van Zeijl H, van der Zwaag S (2014) Self-healing thermally conductive adhesives. J Intell Mater Syst Struct 25:67–74

    Article  CAS  Google Scholar 

  15. Zhong N, Garcia SJ, van der Zwaag S (2016) The effect of filler parameters on the healing of thermal conductivity and mechanical properties of a thermal interface material based on a self-healable organic–inorganic polymer matrix. Smart Mater Struct 25:084016/1–7

  16. Xing L, Li Q, Zhang G, Zhang X, Liu F, Liu L, Huang Y, Wang Q (2016) Self-healable polymer nanocomposites capable of simultaneously recovering multiple functionalities. Adv Funct Mater 26:3524–3531

    Article  CAS  Google Scholar 

  17. Jiang H, Wang Z, Geng H, Song X, Zeng H, Zhi C (2017) Highly flexible and self-healable thermal interface material based on boron nitride nanosheets and a dual cross-linked hydrogel. ACS Appl Mater Interfaces 9:10078–10084

    Article  CAS  Google Scholar 

  18. Yang X, Guo Y, Luo X, Zheng N, Ma T, Tan J (2018) Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos Sci Technol 164:59–64

    Article  CAS  Google Scholar 

  19. Yu H, Feng Y, Gao L, Chen C, Zhang Z, Feng W (2020) Self-healing high strength and thermal conductivity of 3D graphene/PDMS composites by the optimization of multiple molecular interactions. Macromolecules 53:7161–7170

    Article  CAS  Google Scholar 

  20. Zhao LW, Shi XR, Yin Y, Jiang B, Huang YD (2020) A self-healing silicone/BN composite with efficient healing property and improved thermal conductivities. Compos Sci Technol 186:107919/1–8

  21. Huang LY, Yang YX, Wu RY, Fan WF, Dai QQ, He JY, Bai CX (2020) Boron nitride and hyperbranched polyamide assembled recyclable polyisoprene vitrimer with robust mechanical properties, high thermal conductivity and remoldability. Polymer 208:122964/1–10

  22. Chen C, Yu H, Feng Y, Feng W (2021) Polymer composite material with both thermal conduction and self-healing functions. Acta Polym Sin 52:272–280

    CAS  Google Scholar 

  23. Xiao H, Zhang ZP, Huang ZX, Rong MZ, Zhang MQ (2021) Highly thermally conductive, superior flexible and surface metallisable boron nitride paper fabricated by a facile and scalable approach. Compos Commun 23:100584/1–7

  24. Xiao H, Chen F, Zhang ZP, Rong MZ, Zhang MQ (2021) Dihydromyricetin modification of boron nitride micro-sheets and construction of multilayer thermal conduction pathways in glass fiber reinforced epoxy composites. Compos Part B 215:108770/1–9

  25. Turkenburg DH, Fischer DR (2015) Diels-Alder based, thermo-reversible cross-linked epoxies for use in self-healing composites. Polymer 79:187–194

    Article  CAS  Google Scholar 

  26. Tian Q, Rong MZ, Zhang MQ, Yuan YC (2010) Optimization of thermal remendability of epoxy via blending. Polymer 51:1779–1785

    Article  CAS  Google Scholar 

  27. Kuang X, Liu G, Dong X, Liu X, Xu J, Wang D (2015) Facile fabrication of fast recyclable and multiple self-healing epoxy materials through Diels-Alder adduct cross-linker. Polym Chem 53:2094–2103

    Article  CAS  Google Scholar 

  28. Li TL, Hsu SLC (2010) Enhanced thermal conductivity of polyimide films via a hybrid of micro- and nano-sized boron nitride. J Phys Chem B 114:6825–6829

    Article  CAS  Google Scholar 

  29. Shen H, Guo J, Wang H, Zhao N, Xu J (2015) Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Appl Mater Interfaces 7:5701–5708

    Article  CAS  Google Scholar 

  30. Yu C, Gong W, Tian W, Zhang Q, Xu Y, Lin Z, Hu M, Fan X, Yao Y (2018) Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50 W m−1 K−1. Compos Sci Technol 160:199–207

    Article  CAS  Google Scholar 

  31. Wang H, Ding D, Liu Q, Chen Y, Zhang Q (2019) Highly anisotropic thermally conductive polyimide composites via the alignment of boron nitride platelets. Compos B Eng 158:311–318

    Article  CAS  Google Scholar 

  32. Majumdar A (1999) Scanning thermal microscopy. Annu Rev Mater Sci 29:505–585

    Article  CAS  Google Scholar 

  33. Puyoo E, Grauby S, Rampnoux JM, Rouvière E, Dilhaire S (2011) Scanning thermal microscopy of individual silicon nanowires. J Appl Phys 109:024302/1−10

  34. Wei S, Zheng Z, Yu Q, Fan Z, Liu S, Chi Z, Zhang Y, Xu J (2019) Enhanced thermal conductivity of PI films by strengthening three-dimensional rGO network template. Acta Polym Sin 50:402–409

    CAS  Google Scholar 

  35. Li SJ, Li JC, Jia PZ, Zhang WF, Lu YL, Zhang LQ (2021) Bubble-templated construction of three-dimensional ceramic network for enhanced thermal conductivity of silicone rubber composites. Chin J Polym Sci 39:789–795

    Article  CAS  Google Scholar 

  36. Zhou Y, Liu F, Chen CY (2019) Use of BN-coated copper nanowires in nanocomposites with enhanced thermal conductivity and electrical insulation. Adv Compos Hybrid Mater 2:46–50

    Article  CAS  Google Scholar 

  37. Yang H, Dai X, Ruan K, Zhang S, Shi X, Guo Y, Cai H, Gu J (2021) Flexible thermally conductive and electrically insulating silicone rubber composite films with BNNS@Al2O3 fillers. Adv Compos Hybrid Mater 4:36–50

    Article  Google Scholar 

  38. Yang C, Liang C, Ma T, Guo Y, Kong J, Gu J, Chen M, Zhu J (2018) A review on thermally conductive polymeric composites: classification, measurement, model and equations, mechanism and fabrication methods. Adv Compos Hybrid Mater 1:207–230

    Article  Google Scholar 

  39. Feng CP, Bai L, Bao RY, Liu ZY, Yang MB, Chen Z, Yang W (2018) Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Adv Compos Hybrid Mater 1:160–167

    Article  CAS  Google Scholar 

  40. Shi X, Zhang R, Ruan K, Ma T, Guo Y, Gu J (2021) Improvement of thermal conductivities and simulation model for glass fabrics reinforced epoxy laminated composites via introducing hetero-structured BNN-30@BNNS fillers. J Mater Sci Technol 82:239–249

    Article  Google Scholar 

  41. Li Z, Qi S, Cao P, Xie F (2011) EP/GF insulating and thermally conductive composite materials filled with different sizes of BN. China Plast 25:38–41

    Google Scholar 

  42. Tian Q, Yuan YC, Rong MZ, Zhang MQ (2009) A thermally remendable epoxy resin. J Mater Chem 19:1289–1296

    Article  CAS  Google Scholar 

  43. Yang L, Lu X, Wang Z, Xia H (2018) Diels-Alder dynamic crosslinked polyurethane/polydopamine composites with NIR triggered self-healing function. Polym Chem 9:2166–2172

    Article  CAS  Google Scholar 

  44. Wang T, Yu WC, Sun WJ, Jia LC, Gao JF, Tang JH, Su HJ, Yan DX, Li ZM (2020) Healable polyurethane/carbon nanotube composite with segregated structure for efficient electromagnetic interference shielding. Compos Sci Technol 200:108446/1–9

  45. Son D, Kang J, Vardoulis O, Kim Y, Matsuhisa N, Oh JY, To JWF, Mun J, Katsumata T, Liu Y, McGuire AF, Krason M, Molina-Lopez F, Ham J, Kraft U, Lee Y, Yun Y, Tok JBH, Bao Z (2018) An integrated self-healable electronic skin system fabricated via dynamic reconstruction of a nanostructured conducting network. Nat Nanotechnol 13:1057–1065

    Article  CAS  Google Scholar 

  46. Kim SH, Seo H, Kang J, Hong J, Seong D, Kim H, Kim J, Mun J, Youn I, Kim J, Kim Y, Seok H, Lee C, Tok JBH, Bao Z, Son D (2019) An ultrastretchable and self-healable nanocomposite conductor enabled by autonomously percolative electrical pathways. ACS Nano 13:6531–6539

    Article  CAS  Google Scholar 

  47. Zhou D, Huang H, Wang Y, Yu Z, Hu Z (2020) Design and synthesis of an amide-containing crosslinked network based on Diels-Alder chemistry for fully recyclable aramid fabric reinforced composites. Compos Sci Technol 197:108280/1–9

  48. Min Y, Huang S, Wang Y, Zhang Z, Du B, Zhang X, Fan Z (2015) Sonochemical transformation of epoxy-amine thermoset into soluble and reusable polymers. Macromolecules 48:316–322

    Article  CAS  Google Scholar 

  49. Mcelhanon JR, Russick EM, Wheeler DR, Loy DA, Aubert JH (2002) Removable foams based on an epoxy resin incorporating reversible Diels-Alder adducts. J Appl Polym Sci 85:1496–1502

    Article  CAS  Google Scholar 

  50. Liu YL, Hsieh CY (2006) Crosslinked epoxy materials exhibiting thermal remendablility and removability from multifunctional maleimide and furan compounds. J Polym Sci Part A 44:905–913

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grants 52033011, 51873235, 51773229 and 51973237), Natural Science Foundation of Guangdong Province (Grants 2019B1515120038, 2021A1515010417, and 2020A1515011276), Science and Technology Planning Project of Guangdong Province (Grant 2020B010179001), and Industry-University-Research Collaboration Project of Zhuhai City (Grant ZH22017001200004PWC).

Author information

Authors and Affiliations

Authors

Contributions

Fang Chen: Data curation, Investigation. Hua Xiao: Investigation. Zhong Quan Peng: Resources. Ze Ping Zhang: Writing-original draft, Writing-review and editing, Visualization, Funding acquisition. Min Zhi Rong: Conceptualization, Funding acquisition. Ming Qiu Zhang: Methodology, Writing-review and editing, Supervision, Funding acquisition.

Corresponding authors

Correspondence to Ze Ping Zhang, Min Zhi Rong or Ming Qiu Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2177 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, F., Xiao, H., Peng, Z.Q. et al. Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability. Adv Compos Hybrid Mater 4, 1048–1058 (2021). https://doi.org/10.1007/s42114-021-00303-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00303-3

Keywords

Navigation