Skip to main content

Advertisement

Log in

Thermal performance of natural gas hydrate wellbore with different insulation materials

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Huge amounts of gas hydrate exist in offshore deepwater reservoirs, whose exploration and productions depend on the development of cost-effective transport solutions. The control of temperature field in the near wellbore region is critical for preventing the regeneration of hydrate during transportation of the produced fluid. To simulate the transient process, this study develops a 2D heat transfer model for the wellbore area based on the finite difference method. The model is validated with the steady-state temperature profile and the results of numerical simulation. Four different insulation materials are employed in the simulation, and their corresponding thermal performances are evaluated and compared. It is shown that the soil on the seabed can give a certain insulation to the produced fluid in the wellbore and enhanced insulation can be obtained by adding an insulation layer. Furthermore, the model clearly illustrates that, using the micro phase change materials (MPCM) as the insulation layer, which has high energy storage potentials, the wellbore can significantly extend the fluid holding time during the shut-in process.

Graphical abstract

Temperature field of the gas hydrate wellbore with different insulation materials is analyzed by established mathematical heat transfer model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

\(\rho\) :

Density, \(\mathrm{k}\mathrm{g}/{m}^{3}\)

\({c}_{p}\) :

Specific heat, \(\mathrm{J}/(\mathrm{k}\mathrm{g}\cdot ^\circ{\rm C})\)  

T:

Temperature, \(^\circ{\rm C}\)  

\(v\) :

Average velocity of produced fluid, \(\mathrm{m}/\mathrm{s}\)

s:

Space coordinate in longitudinal direction, m

h:

Convective thermal conductivity, \(\mathrm{W}/({m}^{2} \cdot ^\circ{\rm C} )\)  

r:

Space coordinate in radial direction, m

t:

Time, s

k:

Thermal conductivity coefficient, \(\mathrm{W}/(\mathrm{m} \cdot ^\circ{\rm C})\)  

\({L}_{p}\) :

Wellbore length, m

\({m}_{0}\) :

Mass flow rate, \(\mathrm{k}\mathrm{g}/\mathrm{s}\)

\(A\) :

Wellbore cross-sectional area, \({m}^{2}\)

\(L\) :

Latent heat of melting, \(\mathrm{J}/\mathrm{k}\mathrm{g}\)

\(H\) :

Enthalpy, \(\mathrm{J}/\mathrm{k}\mathrm{g}\)

N:

Total number of layers of wellbore

\(\varphi\) :

Volume fraction of MPCM particles or HGB particles %

\(Nu\) :

Nusselt number

\(Re\) :

Reynolds number

\(Pr\) :

Prandtl number

\(Ra\) :

Rayleigh number

\(\mu\) :

Dynamic viscosity, \(\mathrm{P}\mathrm{a} \cdot \mathrm{s}\)  

\(\beta\) :

Thermal expansion coefficient, \(1/\mathrm{K}\)

\(\alpha\) :

Thermal diffusivity, \({m}^{2}/s\)

\(\nu\) :

Kinematic viscosity, \({m}^{2}/s\)

\(U\) :

Overall heat transfer coefficient, \(\mathrm{W}/(\mathrm{m} \cdot ^\circ{\rm C})\)  

HGB:

Hollow glass beads

MPCM:

Micro phase change material

PP:

Polypropylene

N:

Total number of coated layers

i:

Index of layers

I:

Index of insulation layer

g:

Fluid of produced gas

s:

Solid

l:

Liquid

in:

Inlet

M:

Matrix of composite material

m:

Phase change process

p:

Embedded particles in composite materials

o:

External

References

  1. Zhang JB, Wang ZY, Liu S, Zhang WG, Yu J, Sun BJ (2019) Prediction of hydrate deposition in pipelines to improve gas transportation efficiency and safety. Appl Energy 253. https://doi.org/10.1016/j.apenergy.2019.113521

  2. Fu WQ, Wang ZY, Sun BJ, Chen LT (2018) A mass transfer model for hydrate formation in bubbly flow considering bubble-bubble interactions and bubble-hydrate particle interactions. Int J Heat Mass Transf 127:611–621. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.015

    Article  CAS  Google Scholar 

  3. Musakaev NG, Khasanov MK, Borodin SL (2018) The mathematical model of the gas hydrate deposit development in permafrost. Int J Heat Mass Transf 118:455–461. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.127

    Article  CAS  Google Scholar 

  4. Zhang JB, Wang ZY, Sun BJ, Sun XH, Liao YQ (2019) An integrated prediction model of hydrate blockage formation in deep-water gas wells. Int J Heat Mass Transf 140:187–202. https://doi.org/10.1016/j.ijheatmasstransfer.2019.05.039

    Article  CAS  Google Scholar 

  5. Zhang XW, Straume EO, Grasso GA, Morales REM, Sum AK (2020) A bench-scale flow loop study on hydrate deposition under multiphase flow conditions. Fuel 262. https://doi.org/10.1016/j.fuel.2019.116558

  6. Chong ZR, Yang SHB, Babu P, Linga P, Li XS (2016) Review of natural gas hydrates as an energy resource: prospects and challenges. Appl Energy 162:1633–1652. https://doi.org/10.1016/j.apenergy.2014.12.061

    Article  Google Scholar 

  7. Shao YZ, Yang LB, Zhang Q, Wang SD, Wang KF, Xu RZ (2020) Numerical study on gas production from methane hydrate reservoir by depressurization in a reactor. Renew Sustain Energy Rev 134. https://doi.org/10.1016/j.rser.2020.110330

  8. Zhao EM, Hou J, Du QJ, Liu YG, Ji YK, Bai YJ (2021) Numerical modeling of gas production from methane hydrate deposits using low-frequency electrical heating assisted depressurization method. Fuel 290. https://doi.org/10.1016/j.fuel.2020.120075

  9. Zhao EM, Hou J, Liu YG, Ji YK, Liu WB, Lu N (2020) Enhanced gas production by forming artificial impermeable barriers from unconfined hydrate deposits in Shenhu area of South China sea. Energy 213. https://doi.org/10.1016/j.energy.2020.118826

  10. Sum Amadeu K, Koh Carolyn A, Dendy SE (2009) Clathrate hydrates: from laboratory science to engineering practice. Ind Eng Chem Res 48:7457–7465. https://doi.org/10.1021/ie900679m

    Article  CAS  Google Scholar 

  11. Sun XH, Sun BJ, Wang ZY, Chen LT, Gao YH (2018) A hydrate shell growth model in bubble flow of water-dominated system considering intrinsic kinetics, mass and heat transfer mechanisms. Int J Heat Mass Transf 117:940–950. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.045

    Article  CAS  Google Scholar 

  12. Wang ZY, Zhang JB, Sun BJ, Chen LT, Zhao Y, Fu WQ (2017) A new hydrate deposition prediction model for gas-dominated systems with free water. Chem Eng Sci 163:145–154. https://doi.org/10.1016/j.ces.2017.01.030

    Article  CAS  Google Scholar 

  13. Farhadian A, Varfolomeev MA, Shaabani A, Zaripova YF, Yarkovoi VV, Khayarov KR (2020) Inhibition performance of chitosan-graft-polyacrylamide as an environmentally friendly and high-cloud-point inhibitor of nucleation and growth of methane hydrate. Cryst Growth Des 20:1771–1778. https://doi.org/10.1021/acs.cgd.9b01500

    Article  CAS  Google Scholar 

  14. Hoon SY, Jakyung K, Kyuchul S, Daejun C, Yutaek S, Aman ZM et al (2015) Hydrate plug formation risk with varying watercut and inhibitor concentrations. Chem Eng Sci 126:711–718. https://doi.org/10.1016/j.ces.2015.01.016

    Article  CAS  Google Scholar 

  15. Brown P, Erika T, Doug G, Giovanni A, Koh C (2020) Effect of wax/anti-agglomerant interactions on hydrate depositing systems. Fuel 264. https://doi.org/10.1016/j.fuel.2019.116573

  16. Creek JL (2012) Efficient hydrate plug prevention. Energy Fuels 26:4112–4116. https://doi.org/10.1021/ef300280e

    Article  CAS  Google Scholar 

  17. Wang ZY, Zhao Y, Zhang JB, Pan SW, Yu J, Sun BJ (2018) Flow assurance during deepwater gas well testing: hydrate blockage prediction and prevention. J Petrol Sci Eng 163:211–216. https://doi.org/10.1016/j.petrol.2017.12.093

    Article  CAS  Google Scholar 

  18. Singh A, Suri A (2020) A review on gas hydrates and kinetic hydrate inhibitors based on acrylamides. J Nat Gas Sci Eng 83. https://doi.org/10.1016/j.jngse.2020.103539

  19. An Chen Su, Jian, (2015) Lumped models for transient thermal analysis of multilayered composite pipeline with active heating. Appl Therm Eng 87:749–759. https://doi.org/10.1016/j.applthermaleng.2015.05.061

    Article  CAS  Google Scholar 

  20. Olav U, Harald BA, Kinnari KJ, Ragnhild H (2004) Operational experience by applying direct electrical heating for hydrate prevention. SPE Prod Facil 19:161–167

    Article  Google Scholar 

  21. Nebell F, De Naurois HJ, Parenteau T, Decrin MK (2013) Flow assurance modeling using an electrical trace heated pipe-in-pipe: from qualification to offshore testing. Offshore Technology Conference.

  22. Su Jian R, Djane C (2012) Thermal design of multi-layered composite pipelines for deep water oil and gas production. Int J Comput Appl Technol 43:248–259

    Article  Google Scholar 

  23. Hong C, Wang YX, Yang JK, Estefen SF, Lourenco MI (2020) Optimization of pipe insulation volume for a subsea production system. J Offshore Mech Arct Eng 142. https://doi.org/10.1115/1.4046001

  24. Yang J, Marcelo IL, Estefen Segen F (2018) Thermal insulation of subsea pipelines for different materials. Int J Press Vessels Pip 168:100–109. https://doi.org/10.1016/j.ijpvp.2018.09.009

    Article  Google Scholar 

  25. Guo L, Tong W, Xu Y, Ye H (2019) Composites with excellent insulation and high adaptability for lightweight envelopes. Energies 12. https://doi.org/10.3390/en12010053

  26. Herrera-Ramirez LC, Manuela C, de Villoria G, Roberto, (2017) Low thermal and high electrical conductivity in hollow glass microspheres covered with carbon nanofiber-polymer composites. Compos Sci Technol 151:211–218. https://doi.org/10.1016/j.compscitech.2017.08.020

    Article  CAS  Google Scholar 

  27. Wang H, Duan M, An C, Su J (2020) Investigation of thermal behavior of long-distance multilayer pipeline with MicroPCM particles. Int J Heat Mass Transf 153. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119605

  28. Gupta N, Ye R, Porfiri M (2010) Comparison of tensile and compressive characteristics of vinyl ester/glass microballoon syntactic foams. Composites Part B-Engineering 41:236–245. https://doi.org/10.1016/j.compositesb.2009.07.004

    Article  CAS  Google Scholar 

  29. Qiao YG, Wang XD, Zhang XH, Xing ZP (2016) Investigation of flexural properties of hollow glass microsphere filled resin-matrix composites. Pigm Resin Technol 45:426–430. https://doi.org/10.1108/prt-09-2015-0097

    Article  CAS  Google Scholar 

  30. Chiglintseva AS, Nasyrov AA, Chiglintsev IA, Lepikhin SA, Koledin VV (2020) Study of the hydrate formation in a pipeline with insulation coating during gas transfer from the “dome-separator”. Tomsk State University Journal of Mathematics and Mechanics:144–58. https://doi.org/10.17223/19988621/67/13.

  31. Xing ZP, Ke HJ, Wang XD, Zheng T, Qiao YJ, Chen KX (2020) Investigation of the thermal conductivity of resin-based lightweight composites filled with hollow glass microspheres. Polymers 12. https://doi.org/10.3390/polym12030518

  32. Wang C, An L, Duan M, J Su (2020) Transient thermal analysis of multilayer pipeline with phase change material. Appl Therm Eng 165. https://doi.org/10.1016/j.applthermaleng.2019.114512

  33. Kedzierski P, Nagorski Z, Niezgoda T (2016) Determination of local values of heat transfer coefficient in geothermal models with internal functions method. Renewable Energy 92:506–516. https://doi.org/10.1016/j.renene.2016.02.042

    Article  Google Scholar 

  34. Guo JC, Liu Z, Gou B, Zeng MY (2020) Study of wellbore heat transfer considering fluid rheological effects in deep well acidizing. J Petrol Sci Eng 191. https://doi.org/10.1016/j.petrol.2020.107171

  35. Yong B, Qiang B (2005) Subsea pipelines and risers. Elsevier Science, London

    Google Scholar 

  36. Shokouhmand H, Kamkari B (2012) Numerical simulation of phase change thermal storage in finned double-pipe heat exchanger. Appl Mech Mater 232:742–746

    Article  Google Scholar 

  37. Ammar AA, Samah ZN, Tye CT, Mohd RO (2021) Evaluation of hydrogen concentration effect on the natural gas properties and flow performance. Int J Hydrogen Energy 46:974–983. https://doi.org/10.1016/j.ijhydene.2020.09.141

    Article  CAS  Google Scholar 

  38. Ali AA, Zaki NS, Ching TT, Roslee OM (2021) Evaluation of hydrogen concentration effect on the natural gas properties and flow performance. Int J Hydrog Energy 46:974-83.  https://dx.doi.org/10.1016/j.ijhydene.2020.09.141

Download references

Funding

This work is supported by the Hainan Science and Technology Major Project (Grant No. ZDKJ2020011) and Scientific Research Start-up Fund of Hainan University (Grant No. KYQDCZR7-21032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zheng, B., Xu, T. et al. Thermal performance of natural gas hydrate wellbore with different insulation materials. Adv Compos Hybrid Mater 5, 1319–1334 (2022). https://doi.org/10.1007/s42114-021-00288-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00288-z

Keywords

Navigation