Skip to main content
Log in

Study on crystal structure and phase transitions of polyamide 12 via wide-angle X-ray diffraction with variable temperature

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Polyamide 12 (PA12) is a long carbon chain polyamide with plenty of excellent properties. In this work, PA12 samples were prepared in three ways: solution casting (α-crystal form at 30 °C and α + γ-crystal form at 40, 50, 60, and 80 °C, respectively), melt slow cooling (γ-crystal form), and melt quenching (γ-crystal form), which undergoes isothermal crystallization in the range from room temperature to the temperature close to the melting point. The crystallization behaviors, including the crystal transition, d-spacing, and crystallinity, upon heating and cooling were measured by the wide-angle X-ray diffraction (WAXD) from 30 to 235 °C. The results show that the α-crystal form gradually transforms into γ-crystal form during heating, indicating the occurrence of Brill transition. The γ-crystal form is stable below Tm, whereas the γ-crystal form can transform into γ-crystal form above 110 °C. Only γ-crystal form appears when cooling, and most of the crystallization has been completed before cooling to 170 °C. The investigation provides more theoretical supports of phase transitions in PA12 for deep understanding of the modification, optimization, and application.

To investigate the crystallization behaviors of PA12, which were prepared in three ways: solution casting, melt slow cooling, melt quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hıdıroğlu M, Aksüt D, Serçe O, Karabulut H, Şen M (2019) Reducing the hydrocarbon gas diffusion and increasing the pressure-impact strength of fuel transfer pipelines for use in the automotive industry using radiation crosslinked polyamide 12. Radiat Phys Chem 159:118–123

    Article  Google Scholar 

  2. Malshe P, Mazloumpour M, El-Shafei A, Hauser P (2012) Functional military textile: plasma-induced graft polymerization of DADMAC for antimicrobial treatment on nylon-cotton blend fabric. Plasma Chem Plasma Process 32(4):833–843

    Article  CAS  Google Scholar 

  3. Jaiganesh V, Manivannan S, Manivannan S (2014) Numerical analysis and simulation of nylon composite propeller for aircraft. Procedia Eng 97:1079–1088

    Article  CAS  Google Scholar 

  4. Ren F, Zhou R, Sun F, Ma H, Zhou Z, Xu W (2017) Blocked isocyanate silane modified Al2O3/polyamide 6 thermally conductive and electrical insulation composites with outstanding mechanical properties. RSC Adv 7(47):29779–29785

    Article  CAS  Google Scholar 

  5. Zohoori S, Karimi L, Ayaziyazdi S (2014) A novel durable photoactive nylon fabric using electrospun nanofibers containing nanophotocatalysts. J Ind Eng Chem 20(5):2934–2938

    Article  CAS  Google Scholar 

  6. Mathew L, Kutty SKN (2010) Hybrid composite based on Nanosilica, nylon 6 short fibre, and styrene butadiene rubber – a study on the effect of fillers and bonding agent. Prog Rubber Plast Re 26(1):1–20

  7. Firouzi D, Youssef A, Amer M, Srouji R, Amleh A, Foucher DA, Bougherara H (2014) A new technique to improve the mechanical and biological performance of ultra high molecular weight polyethylene using a nylon coating. J Mech Behav Biomed Mater 32:198–209

    Article  CAS  Google Scholar 

  8. Jia Y, He H, Peng X, Meng S, Chen J, Geng Y (2017) Preparation of a new filament based on polyamide-6 for three-dimensional printing. Polym Eng Sci 52(12):1322–1328

    Article  Google Scholar 

  9. Ryšánek P, Malý M, Čapková P, Kormunda M, Kolská Z, Gryndler M, Novák O, Hocelíková L, Bystrianský L, Munzarová M (2017) Antibacterial modification of nylon-6 nanofibers: structure, properties and antibacterial activity. J Polym Res 24(11):208–217

    Article  Google Scholar 

  10. Cherizol R, Sain M, Tjong J (2015) Evaluation of the influence of fibre aspect ratio and fibre content on the rheological characteristic of high yield pulp fibre reinforced polyamide 11 “HYP/PA11” green composite. Open J Polym Chem 5:1–8

    Article  CAS  Google Scholar 

  11. Lu S, Zhou Z, Yu J, Li F, He M (2013) Study on the influence of crystal structures on the performance of low-melting polyamide 6. Polym-Plast Technol Eng 52(2):157–162

    Article  CAS  Google Scholar 

  12. Abdullah AM, Rahim TNAT, Hamad WNFW, Mohamad D, Akil HM, Rajion ZA (2018) Mechanical and cytotoxicity properties of hybrid ceramics filled polyamide 12 filament feedstock for craniofacial bone reconstruction via fused deposition modelling. Dent Mater 34(11):e309–e316

    Article  CAS  Google Scholar 

  13. Ippolito F, Rentsch S, Hübner G, Claypole T, Gane P (2019) Influence of calcium carbonate on polyamide 12 regarding melting, formability and crystallization properties. Compos Part B 164:158–167

    Article  CAS  Google Scholar 

  14. Hernández JLM, d’Almeida JRM (2017) Aging of polyamide 12 in oil at different temperatures and pressures. Polym Adv Technol 28(12):1778–1786

    Article  Google Scholar 

  15. Cano AJ, Salazar A, Rodríguez J (2018) Effect of temperature on the fracture behavior of polyamide 12 and glass-filled polyamide 12 processed by selective laser sintering. Eng Fract Mech 203:66–80

    Article  Google Scholar 

  16. Zuev VV, Shapoval ES, Sakhatskii AS (2016) Dielectric properties of polyamide 12-chromium(III) oxide nanocomposites. Chem Phys Lett 659:277–281

    Article  CAS  Google Scholar 

  17. Bai J, Yuan S, Chow W, Chua CK, Zhou K, Wei J (2015) Effect of surface orientation on the tribological properties of laser sintered polyamide 12. Polym Test 48:111–114

    Article  CAS  Google Scholar 

  18. McGarrigle C, Rodgers I, Mcilhagger A, Harkin-Jones E, Major I, Devine D, Archer E (2017) Extruded monofilament and multifilament thermoplastic stitching yarns. Fibers 5(4):45–61

    Article  Google Scholar 

  19. Fernández CE, Bermúdez M, Alla A, Muñoz-Guerra S, Tocha E, Vancso GJ (2011) Compared structure and morphology of nylon-12 and 10-polyurethane lamellar crystals. Polymer 52(7):1515–1522

    Article  Google Scholar 

  20. Kamal T, Park SY, Park JH, Chang YW (2012) Structural evolution of poly(ether-b-amide12) elastomers during the uniaxial stretching: an in situ wide-angle X-ray scattering study. Macromol Res 20:725–731

    Article  CAS  Google Scholar 

  21. Hedicke K, Wittich H, Mehler C, Gruber F, Altstädt V (2006) Crystallisation behaviour of polyamide-6 and polyamide-66 nanocomposites. Compos Sci Technol 66(3–4):571–575

    Article  CAS  Google Scholar 

  22. Rhee S, White JL (2002) Crystalline structure and morphology of biaxially oriented polyamide-11 films. J Polym Sci Polym Phys 40(23):2624–2640

    Article  CAS  Google Scholar 

  23. Hill MJ, Atkins EDT (1995) Morphology and structure of nylon 68 single crystals. Macromolecules 28(2):604–609

    Article  CAS  Google Scholar 

  24. Brill R (1943) über Beziehungen zwischen der Struktur der Polyamide und der des Seidenfibroins. Z Phys Chem 53B(1):61–74

    Article  Google Scholar 

  25. Wolanov Y, Feldman AY, Harel H, Marom G (2009) Amorphous and crystalline phase interaction during the Brill transition in nylon 66. Express Polym Lett 3(7):452–457

    Article  CAS  Google Scholar 

  26. Liu X, Wu Q, Berglund LA (2002) Polymorphism in polyamide 66/clay nanocomposites. Polymer 43(18):4967–4972

    Article  CAS  Google Scholar 

  27. Feldman AY, Wachtel E, Vaughan GBM, Weinberg A, Marom G (2006) The brill transition in transcrystalline nylon-66. Macromolecules 39(13):4455–4459

    Article  CAS  Google Scholar 

  28. Murthy NS (2006) Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides. J Polym Sci Polym Phys 44:1763–1782

    Article  CAS  Google Scholar 

  29. Li W, Zhang G, Huang Y, Yan D, Wang J, Zhou E (2003) Different crystalline transition behavior in polyamides 12 16,10 16 and 8 16. Polym Bull 49(5):387–394

    Article  CAS  Google Scholar 

  30. Jones NA, Atkins EDT, Hill MJ (2000) Comparison of structures and behavior on heating of solution-grown, chain-folded lamellar crystals of 31 even-even nylons. Macromolecules 33(7):2642–2650

    Article  CAS  Google Scholar 

  31. Li W, Yan D (2006) Crystal structures of polyamides X 18 made from long alkyl dicarboxylic acid. Cryst Growth Des 6(9):2182–2185

    Article  CAS  Google Scholar 

  32. Jones NA, Atkins EDT, Hill MJ (2000) Investigation of solution-grown, chain-folded lamellar crystals of the even-even nylons: 6 6, 8 6, 8 8, 10 6, 10 8, 10 10, 12 6, 12 8, 12 10, and 12 12. J Polym Sci Polym Phys 38(9):1209–1221

    Article  CAS  Google Scholar 

  33. Hiramatsu N, Haraguchi K, Hirakawa S (1983) Study of transformations among α, γ and γ’ forms in nylon 12 by X-ray and DSC. Jpn J Appl Phys 22(2):335–339

    Article  CAS  Google Scholar 

  34. Starkweather HW, Jones GA (1981) Crystalline transitions in powder of nylon 6 6 crystallized from solution. J Polym Sci Polym Phys 19(3):467–477

    Article  CAS  Google Scholar 

  35. Starkweather HW (1989) Deconvolution of the excess heat capacity of the Brill transition in nylon 66. Macromolecules 22(4):2000–2003

    Article  CAS  Google Scholar 

  36. Li L, Koch MHJ, de Jeu WH (2003) Crystalline structure and morphology in nylon-12: a small- and wide-angle X-ray scattering study. Macromolecules 36(5):1626–1632

    Article  CAS  Google Scholar 

  37. Wan C, Zhao F, Bao X, Kandasubramanian B, Duggan M (2009) Effect of POSS on crystalline transitions and physical properties of polyamide 12. J Polym Sci Polym Phys 47:121–129

    Article  CAS  Google Scholar 

  38. Dencheva N, Nunes TG, Oliveira MJ, Denchev Z (2005) Crystalline structure of polyamide 12 as revealed by solid-state 13C NMR and synchrotron WAXS and SAXS. J Polym Sci Polym Phys 43(24):3720–3733

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. U1504527) and Zhongyuan Science and Technology Innovation Leading Talents Project (194200510030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wentao Liu or Suqin He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 940 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, R., Huang, M., Ma, L. et al. Study on crystal structure and phase transitions of polyamide 12 via wide-angle X-ray diffraction with variable temperature. Adv Compos Hybrid Mater 3, 522–529 (2020). https://doi.org/10.1007/s42114-020-00192-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-020-00192-y

Keywords

Navigation