Skip to main content
Log in

Pulse gas-assisted multi-needle electrospinning of nanofibers

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Multi-needle electrospinning is an effective method to increase the productivity of nanofibers. In this paper, the number of single-needle jets was increased to further improve the production efficiency. As the traditional method for increasing the number of single-needle jets has poor controllability and persistence, we proposed a gas-assisted method to increase the yield of nanofibers. A coaxial gas auxiliary needle was designed with an intermediate shaft supplied gas and the outer shaft supplied solution. Innovatively using pulse gas to produce continuous and stable bubbles which are ruptured on the needle. The liquid film is continuously disturbed, which generates jets in the electric field, thereby increasing the number of jets of a single needle. After optimization of the single-needle gas-assisted electrospinning process, the stable spraying process of 16-pin multi-needle electrospinning has been realized. The gas-assisted electrospinning productivity was 4.7 times higher than that of without gas assistance. It provided a new idea for improving the stable production of the multi-needle electrospinning.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Poellmann MJ, Johnson AJW (2014) Multimaterial polyacrylamide: fabrication with electrohydrodynamic jet printing, applications, and modeling. Biofabrication 6(3):12. https://doi.org/10.1088/1758-5082/6/3/035018

    Article  CAS  Google Scholar 

  2. Luzio A, Canesi EV, Bertarelli C, Caironi M (2014) Electrospun polymer fibers for electronic applications. Materials 7(2):906–947. https://doi.org/10.3390/ma7020906

    Article  CAS  Google Scholar 

  3. Wendorff JH, Agarwal S, Greiner A (2012) Electrospinning: materials, processing, and applications, vol 1. Wiley-VCH, Hoboken

    Book  Google Scholar 

  4. Garg K, Bowlin GL (2011) Electrospinning jets and nanofibrous structures. Biomicrofluidics 5(1). https://doi.org/10.1063/1.3567097

    Article  Google Scholar 

  5. Jiang G, Zhang S, Qin X (2016) Effect of processing parameters on free surface electrospinning from a stepped pyramid stage. J Ind Text 45(4):483–494. https://doi.org/10.1177/1528083714537101

    Article  CAS  Google Scholar 

  6. Shin HU, Li Y, Paynter A, Nartetamrongsutt K, Chase GG (2015) Vertical rod method for electrospinning polymer fibers. Polymer 65:26–33. https://doi.org/10.1016/j.polymer.2015.03.052

    Article  CAS  Google Scholar 

  7. Holopainen J, Penttinen T, Santala E, Ritala M (2015) Needleless electrospinning with twisted wire spinneret. Nanotechnology 26(2):025301

    Article  Google Scholar 

  8. Salehhudin HS, Mohamad EN, Wan NLM, Afifi AM (2017) Multiple-jet electrospinning methods for nanofiber processing: a review. Mater Manuf Process 33:479–498. https://doi.org/10.1080/10426914.2017.1388523

    Article  Google Scholar 

  9. Zhang CC, Gao CC, Chang MW, Ahmad Z, Li JS (2016) Continuous micron-scaled rope engineering using a rotating multi-nozzle electrospinning emitter. Appl Phys Lett 109(15):151903

    Article  Google Scholar 

  10. Xu J, Liu C, Hsu PC, Liu K, Zhang R, Liu Y, Cui Y (2016) Roll-to-roll transfer of electrospun Nanofiber film for high-efficiency transparent air filter. Nano Lett 16(2):1270

    Article  CAS  Google Scholar 

  11. Wang H, Li M, Chen X, Zheng J, Chen X, Zhu Z (2015) Study of deposition characteristics of multi-nozzle near-field electrospinning in electric field crossover interference conditions. AIP Adv 5(4). https://doi.org/10.1063/1.4902173

    Article  Google Scholar 

  12. Reneker DH, Yarin AL (2008) Electrospinning jets and polymer nanofibers. Polymer 49(10):2387–2425. https://doi.org/10.1016/j.polymer.2008.02.002

    Article  CAS  Google Scholar 

  13. YAMASHITA Y, Ko F, TANAKA A, MIYAKE H (2007) Characteristics of elastomeric nanofiber membranes produced by electrospinning. J Text Eng 53(4):137–142

    Article  Google Scholar 

  14. Vaseashta A (2007) Controlled formation of multiple Taylor cones in electrospinning process. Appl Phys Lett 90(9):093115

    Article  Google Scholar 

  15. Paruchuri S, Brenner MP (2007) Splitting of a liquid jet. Phys Rev Lett 98(13):134502

    Article  Google Scholar 

  16. Wang X, Lin T, Wang X (2015) Use of airflow to improve the nanofibrous structure and quality of nanofibers from needleless electrospinning. J Ind Text 45(2):310–320. https://doi.org/10.1177/1528083714537100

    Article  Google Scholar 

  17. Liu Y, He J-H (2007) Bubble electrospinning for mass production of nanofibers. Int J Nonlin Sci Numer Simul 8(3):393–396

    Article  CAS  Google Scholar 

  18. Huang X, Wu D, Zhu Y, Sun D, Ieee (2007) Needleless Electrospinning of Multiple Nanofibers. 2007 7th Ieee conference on nanotechnology, Vol 1–3

  19. Bird JC, de Ruiter R, Laurent C, Stone HA (2010) Daughter bubble cascades produced by folding of ruptured thin films. Nature 465(7299):759–762

    Article  CAS  Google Scholar 

  20. Byakova AV, Gnyloskurenko SV, Nakamura T, Raychenko OI (2003) Influence of wetting conditions on bubble formation at orifice in an inviscid liquid : mechanism of bubble evolution. Colloids Surf A Physicochem Eng Asp 218(1):73–87

    Google Scholar 

  21. Chen R, Wan Y, Si N, He J-H, Ko F, Wang S-Q (2015) Bubble rupture in bubble electrospinning. Therm Sci 19(4):1141–1149

    Article  Google Scholar 

  22. Chen RX (2015) On surface tension of a bubble under presence of electrostatic force. Therm Sci 19(1):353–355. https://doi.org/10.2298/tsci141214149c

    Article  Google Scholar 

  23. He J-H (2008) Nano bubble dynamics in spider spinning system. J Anim Vet Adv 7(2):207–209

    Google Scholar 

  24. He J-H (2012) Effect on temperature on surface tension of a bubble and hierarchical ruptured bubbles for nanofiber fabrication. Therm Sci 16(1):327–330

    Article  Google Scholar 

  25. He J-X, Qi K, Zhou Y-M, Cui S-Z (2014) Fabrication of continuous nanofiber yarn using novel multi-nozzle bubble electrospinning. Polym Int 63(7):1288–1294. https://doi.org/10.1002/pi.4672

    Article  CAS  Google Scholar 

  26. Jian Z, Yong Y, Chen Q, Yu Z (2017) Experimental study and numerical simulation of periodic bubble formation at submerged micron-sized nozzles with constant gas flow rate. Chem Eng Sci 168:1–10

    Article  Google Scholar 

  27. Li Z-B, Liu H-Y, Dou H (2014) On air blowing direction in the blown bubble-spinning. Materia-Brazil 19(4):345–349

    CAS  Google Scholar 

  28. Liu F-J, Dou H (2013) A modified Yang-Laplace equation for the bubble electrospinning considering the effect of humidity. Therm Sci 17(2):629–630

    Article  Google Scholar 

  29. Nahra HK, Kamotani Y (2000) Bubble formation from wall orifice in liquid cross-flow under low gravity. Chem Eng Sci 55(20):4653–4665

    Article  CAS  Google Scholar 

  30. Vafaei S, Angeli P, Wen D (2011) Bubble growth rate from stainless steel substrate and needle nozzles. Colloids Surf A Physicochem Eng Asp 384(1):240–247

    Article  CAS  Google Scholar 

  31. Vafaei S, Wen D (2010) Bubble formation on a submerged micronozzle. J Colloid Interface Sci 343(1):291–297

    Article  CAS  Google Scholar 

  32. Yuewen D (2016) Experimental study on the formation and movement of bubbles in water. Xinjiang University

  33. Nieminen HJ, Laidmäe I, Salmi A, Rauhala T, Paulin T, Heinämäki J, Hæggström E (2018) Ultrasound-enhanced electrospinning. Sci Rep-Uk 8(1):4437

    Article  Google Scholar 

  34. Delnoij E, Kuipers JAM, Swaaij WPMV (1997) Dynamic simulation of gas-liquid two-phase flow: effect of column aspect ratio on the flow structure. Chem Eng Sci 52(21–22):3759–3772

    Article  CAS  Google Scholar 

  35. Russell TP, Lin Z, Schäffer E, Steiner U (2003) Aspects of electrohydrodynamic instabilities at polymer interfaces. Fibers Polym 4(1):1–7

    Article  CAS  Google Scholar 

  36. Schäffer E, ThurnAlbrecht T, Russell TP, Steiner U (2001) Electrohydrodynamic instabilities in polymer films. Epl 53(4):518–524

    Article  Google Scholar 

  37. Xie S (2003) Quantitative discussion on the static induction law of spherical conductors in a uniform electric field. J Binzhou Univ 19(2):45–47

    CAS  Google Scholar 

  38. Qu C, Yu Y, Zhang J (2017) Experimental study of bubbling regimes on submerged micro-orifices. Int J Heat Mass Transf 111:17–28

    Article  Google Scholar 

  39. Yuanping H (2015) Study on the mechanism of charged droplet breakage and electrohydrodynamic characteristics. Jiangsu University

Download references

Funding

This work was financially supported by Science and Technology Project of Guangdong Province (2017B090911012), University Innovation and Entrepreneurship Education Major Project of Guangzhou City (Item Number: 201709P05), Project of Science and Technology of Foshan City(2015IT100152), Key Laboratory Construction Projects in Guangdong (2017B030314178), Project of Jihua Laboratory (No.X190071UZ190), and Science and Technology Program of Guangzhou, China (No.201803010065).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xun Chen or Han Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Chen, X., Zhu, Z. et al. Pulse gas-assisted multi-needle electrospinning of nanofibers. Adv Compos Hybrid Mater 3, 98–113 (2020). https://doi.org/10.1007/s42114-019-00129-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00129-0

Keywords

Navigation