Skip to main content
Log in

Ordered 2D layered MoS2/conjugated polymer nanocomposites: influences of sulfonated β-cyclodextrin on the preparation and properties

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Nanocomposites of MoS2 and conjugated polymers are excellent candidates for optical limiters, solid electrodes, electrolytes, and other purposes. The ordered layered structures of nanocomposites are essential. A strategy to prepare the regular two-dimensional (2D) layered MoS2/conjugated polymer nanocomposites was developed based on the β-cyclodextrin (β-CD) template. The complete intercalation nanocomposites of molybdenum disulfide (MoS2) with poly(3,4-ethylenedioxythiophene) (PEDOT), poly(3-methylthiophene) (P3MT), and polypyrrole (PPy) were prepared successfully. MoS2 is in the form of a monolayer or no more than trilayer with conjugated polymers inserted into the interlayers. In comparison with that of β-CD, sulfonated β-CD (β-CDSO3) has better water-soluble and act as dopants to improve the electrical and electrochemical performances of these nanocomposites simultaneously. The conductivities of nanocomposites based on β-CDSO3 template increase by one to three orders of magnitude, and their capacitance performances are superior. As an innovative route to prepare the regular 2D layered MoS2/polymer nanocomposites, the methodology is expected to be applicable to a wide range of layered materials and hydrophobic monomers.

A strategy to prepare regular 2D layered MoS2/conjugated polymer composites with high conductivity was developed via β-CDSO3 template.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Coleman JN, Lotya M, O’Neill A, Bergin SD, King PJ, Khan U et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571

    Article  Google Scholar 

  2. Zhang HX, Ko EB, Park JH, Moon YK, Zhang XQ, Yoon KB (2016) Fabrication of polyethylene/MoS2 nanocomposites using a novel exfoliated-MoS2-MgCl bi-supported Ziegler-Natta catalyst via in-situ polymerization. Compos Sci Technol 137:9–15

    Article  Google Scholar 

  3. Xu WB, Mu B, Wang AQ (2018) All-solid-state high-energy asymmetric supercapacitor based on natural tubular fibers. J Mater Sci 53:11659–11670

    Article  Google Scholar 

  4. Mirabal N, Aguirre P, Ana MAS, Benavente E, González G (2003) Thermal stability and electrical conductivity in polyethers-molybdenum disulfide nanocomposites. Electrochim Acta 48:2123–2127

    Article  Google Scholar 

  5. Fan X, Khosravi F, Rahneshin V, Shanmugam M, Loeian M, Jasinski J, Panchapakesan B (2015) MoS2 actuators: reversible mechanical responses of MoS2-polymer nanocomposites to photons. Nanotechnology 26:261001

    Article  Google Scholar 

  6. Zhao M, Chang MJ, Wang Q, Zhu ZT, Zhai XP, Zirak M, Zhang HL (2015) Unexpected optical limiting properties from MoS2 nanosheets modified by a semiconductive polymer. Chem Commun 51:12262–12265

    Article  Google Scholar 

  7. Tang H, Wang J, Yin H, Zhao H, Wang D, Tang Z (2015) Growth of polypyrrole ultrathin films on MoS2 monolayers as high-performance supercapacitor electrodes. Adv Mater 27:1117–1123

    Article  Google Scholar 

  8. Kim IY, Jo YK, Lee JM, Wang LZ, Hwang SJ (2014) Unique advantages of exfoliated 2D nanosheets for tailoring the functionalities of nanocomposites. J Phys Chem Lett 5:4149–4161

    Article  Google Scholar 

  9. Golub AS, Lenenko ND, Zaikovskii VI, Antipin MY (2012) Molybdenum disulfide-polymer nanocomposite structures with different sequences of alternating inorganic and organic layers. Russ Chem Bull 61:1950–1958

    Article  Google Scholar 

  10. Gonzalez G, Ana MAS, Benavente E (1998) Mixed conductivity and lithium diffusion in poly (ethylene oxide) molybdenum disulfide nanocomposites. Electrochim Acta 43:1327–1332

    Article  Google Scholar 

  11. Bissessur R, Gallant D, Brüning R (2003) Novel nanocomposite material consisting of poly [oxymethylene-(oxyethylene)] and molybdenum disulfide. Mater Chem Phys 82:316–320

    Article  Google Scholar 

  12. Bissessur R, Gallant D, Brüning R (2003) Novel intercalation compound of poly[oligo(ethylene glycol)]-oxalate in molybdenum disulfide. J Mater Sci Lett 22:429–431

    Article  Google Scholar 

  13. Bissessur R, White W (2006) Novel alkyl substituted polyanilines/molybdenum disulfide nanocomposites. Mater Chem Phys 99:214–219

    Article  Google Scholar 

  14. Lin BZ, Ding C, Xu BH, Chen ZJ, Chen YL (2009) Preparation and characterization of polythiophene/molybdenum disulfide intercalation material. Mater Res Bull 44:719–723

    Article  Google Scholar 

  15. Lin BZ, Pei XK, Zhang JF, Han GH, Li Z, Liu PD, Wu JH (2004) Preparation and characterization of nanocomposite materials consisting of molybdenum disulfide and cobalt(II) coordination complexes. J Mater Chem 14:2001–2005

    Article  Google Scholar 

  16. Oriakhi CO, Nafshun RL, Lerner MM (1996) Preparation of nanocomposites of linear poly(ethylenimine) with layered hosts. Mater Res Bull 31:1513–1520

    Article  Google Scholar 

  17. Zhou K, Liu J, Wen P, Hu Y, Gui Z (2014) A noncovalent functionalization approach to improve the dispersibility and properties of polymer/MoS2 composites. Appl Surf Sci 316:237–244

    Article  Google Scholar 

  18. Sorrentino A, Altavilla C, Merola M, Senatore A, Ciambelli P, Iannace S (2015) Nanosheets of MoS2-oleylamine as hybrid filler for self-lubricating polymer composites: thermal, tribological, and mechanical properties. Polym Compos 36:1124–1134

    Article  Google Scholar 

  19. Schmidt B, Hetzer V, Ritter MH, Barner-Kowollik C (2014) Complex macromolecular architecture design via cyclodextrin host/guest complexes. Prog Polym Sci 39:235–249

    Article  Google Scholar 

  20. Zhou Y, Fan X, Zhang W, Xue D, Kong J (2014) Stimuli-induced gel-sol transition of supramolecular hydrogels based on β-cyclodextrin polymer/ferrocene-containing triblock copolymer inclusion complexes. J Polym Res 21:1–10

    Google Scholar 

  21. Wycisk A, Döring A, Schneider M, Schönhoff M, Kuckling D (2015) Synthesis of β-cyclodextrin-based star block copolymers with thermo-responsive behavior. Polymers 7:921–938

    Article  Google Scholar 

  22. Setijadi E, Tao L, Liu J, Jia Z, Boyer C, Davis TP (2009) Biodegradable starpolymers functionalized with β-cyclodextrin inclusion complexes. Biomacromol 10:2699–2707

    Article  Google Scholar 

  23. Tian W, Fan X, Kong J, Liu Y, Liu T, Huang Y (2010) Novel supramolecular system of amphiphilic hyperbranched polymer with b-cyclodextrin and hyperbranched topography cavities: synthesis and selective encapsulation. Polymer 51:2556–2564

    Article  Google Scholar 

  24. Chen M, Shen X, Liu P, Wei Y, Meng Y, Zheng G, Diao G (2015) β-Cyclodextrin polymer as a linker to fabricate ternary nanocomposites AuNPs/pATP-β-CDP/rGO and their electrochemical application. Carbohydr Polym 119:26–34

    Article  Google Scholar 

  25. Ogoshi T, Chujo Y (2003) Synthesis of organic-inorganic polymer hybrids by means of host-guest interaction utilizing cyclodextrin. Macromol 36:654–660

    Article  Google Scholar 

  26. Huang J, Su P, Zhao B, Yang Y (2015) Facile one-pot synthesis of β-cyclodextrin-polymer-modified Fe3O4 microspheres for stereoselective absorption of amino acid compounds. Anal Methods 7:2754–2761

    Article  Google Scholar 

  27. Yang Z, Ji H (2013) 2-Hydroxypropyl-β-cyclodextrin polymer as a mimetic enzyme for mediated synthesis of benzaldehyde in water. ACS Sustain Chem Eng 1:1172–1179

    Article  Google Scholar 

  28. Shen HM, Ji HB (2012) Aminoalcohol-modified β-cyclodextrin inducing biomimetic symmetric oxidation of thioanisole in water. Carbohydr Res 354:49–58

    Article  Google Scholar 

  29. Wei C, Wan X, Xu N, Xue G (2003) Ordered conducting polypyrrole doped with sulfopropyl ether of β-cyclodextrin. Macromol 36:276–278

    Article  Google Scholar 

  30. Gee MA, Frindt RF, Joensen P, Morrison SR (1986) Inclusion compounds of MoS2. Mater Res Bull 21:543–549

    Article  Google Scholar 

  31. Parmerter SM, Allen JEE, Hull GA (1969) Cyclodextrins with anionic properties: U.S. Patent 3426011: 2–4

  32. Szejtli J (1998) Introduction and general overview of cyclodextrin chemistry. Chem Rev 98:1743–1754

    Article  Google Scholar 

  33. Guyard L, Hapiot P, Jouini M, Lacroix JC, Lagrost C, Neta P (1999) Oxidative coupling of small oligothiophenes and oligopyrroles in water in the presence of cyclodextrin. Pulse radiolysis investigations. J Phys Chem B 103:4009–4015

    Article  Google Scholar 

  34. Kosidowski L, Powell AV (1998) Naphthalene intercalation into molybdenum disulfide. Chem Commun 20:2201–2202

    Article  Google Scholar 

  35. Wang J, Wu Z, Yin H, Li W, Jiang Y (2014) Poly(3,4-ethylenedioxythiophene)/MoS2 nanocomposites with enhanced electrochemical capacitance performance. RSC Adv 4:56926–56932

    Article  Google Scholar 

  36. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single-and few-layer MoS2. ACS Nano 4:2695–2700

    Article  Google Scholar 

  37. Ghatak S, Pal AN, Ghosh A (2010) Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5:7707–7712

    Article  Google Scholar 

  38. Fang Y, Lv Y, Gong F, Elzatahry AA, Zheng G, Zhao D (2016) Synthesis of 2D-mesoporous-carbon/MoS2 heterostructures with well-defined interfaces for high-performance lithium-ion batteries. Adv Mater 28:9385–9390

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

1. The ordered 2D layered MoS2/conjugated polymer nanocomposites can be obtained successfully whether based on β-CD or β-CDSO3 template.

2. The method of β-CDSO3 template effectively solves the incompatibility of composites between hydrophobic monomer and hydrophilic inorganic materials.

3. The method of β-CDSO3 template effectively solves the problems of insulating β-CD impede the charge transfer.

4. The methodology with β-CDSO3 template is superior and facilitates to prepare the regular 2D layered MoS2/polymer composites.

Electronic supplementary material

ESM 1

(DOCX 2275 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wu, Z., Xie, R. et al. Ordered 2D layered MoS2/conjugated polymer nanocomposites: influences of sulfonated β-cyclodextrin on the preparation and properties. Adv Compos Hybrid Mater 2, 330–338 (2019). https://doi.org/10.1007/s42114-019-00090-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-019-00090-y

Keywords

Navigation