Skip to main content
Log in

Effect of stacking sequence on the flexural properties of carbon and glass fibre-reinforced hybrid composites

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

A study on the flexural properties of carbon and glass fibre-reinforced epoxy hybrid composites is presented in this paper. For the purpose of understanding the effect of stacking sequence on the flexural properties, test specimens of both glass/carbon and sandwich stacking sequences were studied both experimentally and by simulation. The experimental flexural properties were obtained by three-point bend test in accordance with ASTM D7264/D7264M-15. Simulation was achieved with the aid of finite element analysis (FEA) and classical lamination theory (CLT). From the experimental and simulation results, it is concluded that for the hybrid composites with glass/carbon stacking sequences, when glass/epoxy laminas are placed on the compressive face, positive hybrid effects are present. When glass/epoxy laminas are placed on the tensile face, the hybrid effect is dominantly negative. For the sandwich-type hybrid composites, carbon/epoxy laminas should be the skin and glass/epoxy laminas should be the core.

Flexural properties of glass/carbon fibre reinforced hybrid composites

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kretsis G (1987) A review on the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites 18(1):13–23

    Article  CAS  Google Scholar 

  2. Manders PW, Bader MG (1981) The strength of hybrid glass/carbon fibre composites. J Mater Sci 16(8):2233–2245

    Article  CAS  Google Scholar 

  3. Dong C, Duong J, Davies IJ (2012) Flexural properties of S-2 glass and TR30S carbon fiber-reinforced epoxy hybrid composites. Polym Compos 33(5):773–781

    Article  CAS  Google Scholar 

  4. Dong C, Ranaweera-Jayawardena HA, Davies IJ (2012) Flexural properties of hybrid composites reinforced by S-2 glass and T700S carbon fibres. Compos Part B 43(2):573–581

    Article  CAS  Google Scholar 

  5. De San Miguel B. Sudarisman, Davies IJ (2009) The effect of partial substitution of E-glass fibre for carbon fibre on the mechanical properties of CFRP composites, in Proceedings of the International Conference on Materials and Metallurgical Technology 2009 (ICOMMET 2009). 125–128

  6. Fischer S, Marom G (1987) The flexural behaviour of aramid fibre hybrid composite materials. Compos Sci Technol 28(4):291–314

    Article  CAS  Google Scholar 

  7. Dong C, Davies IJ (2012) Optimal design for the flexural behaviour of glass and carbon fibre reinforced polymer hybrid composites. Mater Des 37:450–457

    Article  CAS  Google Scholar 

  8. Dong C, Davies IJ (2013) Flexural properties of glass and carbon fiber reinforced epoxy hybrid composites. Proc Instit Mech Eng, Part L: J Mater Design Appl 227(4):308–317

    CAS  Google Scholar 

  9. Dong C, Davies IJ (2014) Flexural and tensile strengths of unidirectional hybrid epoxy composites reinforced by S-2 glass and T700S carbon fibres. Mater Des 54:955–966

    Article  CAS  Google Scholar 

  10. Dong C, Davies IJ (2014) Flexural and tensile moduli of unidirectional hybrid epoxy composites reinforced by S-2 glass and T700S carbon fibres. Mater Des 54:893–899

    Article  CAS  Google Scholar 

  11. Dong C, Davies IJ (2015) Flexural strength of bidirectional hybrid epoxy composites reinforced by E glass and T700S carbon fibres. Compos Part B 72:65–71

    Article  CAS  Google Scholar 

  12. Sudarisman, Dong C, , and I.J. Davies, Flexural properties of E glass and TR50S carbon fiber reinforced epoxy hybrid composites. J Mater Eng Perform, 2013. 22(1): p. 41–49

    Article  Google Scholar 

  13. Marom G et al (1978) Hybrid effects in composites: conditions for positive or negative effects versus rule-of-mixtures behaviour. J Mater Sci 13(7):1419–1426

    Article  CAS  Google Scholar 

  14. Pandya KS, Veerraju C, Naik NK (2011) Hybrid composites made of carbon and glass woven fabrics under quasi-static loading. Mater Des 32(7):4094–4099

    Article  CAS  Google Scholar 

  15. Giancaspro JW, Papakonstantinou CG, Balaguru PN (2010) Flexural response of inorganic hybrid composites with E-glass and carbon fibers. J Eng Mater Technol 132(2):021005–021005-8

    Article  Google Scholar 

  16. Muñoz R et al (2014) Mechanical behavior and failure micromechanisms of hybrid 3D woven composites in tension. Compos A: Appl Sci Manuf 59:93–104

    Article  Google Scholar 

  17. Yu H et al (2015) Pseudo-ductility in intermingled carbon/glass hybrid composites with highly aligned discontinuous fibres. Compos A: Appl Sci Manuf 73:35–44

    Article  CAS  Google Scholar 

  18. Miwa M, Horiba N (1994) Effects of fibre length on tensile strength of carbon/glass fibre hybrid composites. J Mater Sci 29(4):973–977

    Article  CAS  Google Scholar 

  19. Dorigato A, Pegoretti A (2014) Flexural and impact behaviour of carbon/basalt fibers hybrid laminates. J Compos Mater 48(9):1121–1130

    Article  Google Scholar 

  20. Valença SL et al (2015) Evaluation of the mechanical behavior of epoxy composite reinforced with Kevlar plain fabric and glass/Kevlar hybrid fabric. Compos Part B 70:1–8

    Article  Google Scholar 

  21. Ary Subagia IDG et al (2014) Effect of stacking sequence on the flexural properties of hybrid composites reinforced with carbon and basalt fibers. Compos Part B 58:251–258

    Article  CAS  Google Scholar 

  22. Swolfs Y et al (2014) Tensile behaviour of intralayer hybrid composites of carbon fibre and self-reinforced polypropylene. Compos A: Appl Sci Manuf 59:78–84

    Article  CAS  Google Scholar 

  23. Taketa I et al (2010) Interply hybrid composites with carbon fiber reinforced polypropylene and self-reinforced polypropylene. Compos A: Appl Sci Manuf 41(8):927–932

    Article  Google Scholar 

  24. Herakovich CT (1981) On the relationship between engineering properties and delamination of composite materials. J Compos Mater 15(4):336–348

    Article  CAS  Google Scholar 

  25. Pagano NJ, Pipes RB (1971) The influence of stacking sequence on laminate strength. J Compos Mater 5(1):50–57

    Article  Google Scholar 

  26. Kalantari M, Dong C, Davies IJ (2016) Numerical investigation of the hybridisation mechanism in fibre reinforced hybrid composites subjected to flexural load. Compos Part B 102:100–111

    Article  CAS  Google Scholar 

  27. Jalalvand M, Czél G, Wisnom MR (2014) Numerical modelling of the damage modes in UD thin carbon/glass hybrid laminates. Compos Sci Technol 94:39–47

    Article  CAS  Google Scholar 

  28. Zhang J et al (2012) Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Mater Des 36:75–80

    Article  CAS  Google Scholar 

  29. Bilyeu B, Brostow W, Menard KP (1999) Epoxy thermosets and their applications I: chemical structures and applications. J Mater Educ 21(5/6):281–286

    CAS  Google Scholar 

  30. Mallick PK (1993) Fiber-reinforced composites: materials, manufacturing, and design, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  31. Xiao X, Astakhov V, Su T (1999) A study of resin transfer molding process using experimental design method. in Proceedings of ICCM-12. Paris, France

  32. Sudarisman N, Davies IJ (2008) The effects of processing parameters on the flexural properties of unidirectional carbon fibre-reinforced polymer (CFRP) composites. Mater Sci Eng: A 498(1–2):65–68

    Article  Google Scholar 

  33. ASTM International (2015) Standard test method for flexural properties of polymer matrix composite materials, in ASTM D7264/D7264M-15. ASTM International, West Conshohocken

    Google Scholar 

  34. Czél G, Wisnom MR (2013) Demonstration of pseudo-ductility in high performance glass/epoxy composites by hybridisation with thin-ply carbon prepreg. Compos A: Appl Sci Manuf 52:23–30

    Article  Google Scholar 

  35. Chou T-W (1992) Microstructural Design of Fiber Composites. Cambridge University Press, Cambridge, U.K.

    Book  Google Scholar 

  36. Hashin Z (1983) Analysis of composite materials—a survey. J Appl Mech 50(3):481–505

    Article  Google Scholar 

  37. Lo KH, Chim ESM (1992) Compressive strength of unidirectional composites. J Reinf Plast Compos 11(8):838–896

    Article  CAS  Google Scholar 

  38. Budiansky B, Fleck NA (1993) Compressive failure of fibre composites. J Mech Phys Solids 41(1):183–211

    Article  Google Scholar 

  39. Bullock RE (1974) Strength ratios of composite materials in flexure and in tension. J Compos Mater 8:200–206

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chensong Dong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, C., Davies, I.J. Effect of stacking sequence on the flexural properties of carbon and glass fibre-reinforced hybrid composites. Adv Compos Hybrid Mater 1, 530–540 (2018). https://doi.org/10.1007/s42114-018-0034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-018-0034-5

Keywords

Navigation