Skip to main content
Log in

Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

In this work, we reported a kind of electrical insulating, highly through-plane thermally conductive polyolefin elastomer (POE)-based composites filled with commercial boron nitride (BN) fabricated by a conventional melt-mixing method of two-roll milling, followed by hot compression and mechanical cutting. The as-fabricated composites with BN flakes perfectly aligning vertically in the matrix revealed high through-plane thermal conductivity (6.94 W m−1 K−1 at a BN content of 43.75 vol%), outstanding electrical insulation (4.34× Ω cm at a BN content of 43.75 vol%), and quite good mechanical properties. This fabrication procedure features facile process, industrial equipment, and easy industrialization, and the as-prepared composites with outstanding comprehensive performance are promising for thermal interface materials (TIMs) application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References 

  1. Ghaffari Mosanenzadeh S, Naguib HE (2016) Effect of filler arrangement and networking of hexagonal boron nitride on the conductivity of new thermal management polymeric composites. Compos Part B 85:24–30

    Article  Google Scholar 

  2. Bhanushali S, Jason NN, Ghosh P, Ganesh A, Simon GP, Cheng W (2017) Enhanced thermal conductivity of copper nanofluids: the effect of filler geometry. ACS Appl Mater Interfaces 9(22):18925–18935

    Article  Google Scholar 

  3. Jing L, Samani MK, Liu B, Li H, Tay RY, Tsang SH et al (2017) Thermal conductivity enhancement of coaxial carbon@boron nitride nanotube arrays. ACS Appl Mater Interfaces 9(17):14555–14560

    Article  Google Scholar 

  4. Dang TML, Kim C-Y, Zhang Y, Yang J-F, Masaki T, Yoon D-H (2017) Enhanced thermal conductivity of polymer composites via hybrid fillers of anisotropic aluminum nitride whiskers and isotropic spheres. Compos Part B 114:237–246

    Article  Google Scholar 

  5. Feng C-P, Ni H-N, Chen J, Yang W (2016) Facile method to fabricate highly thermally conductive graphite/PP composite with network structures. ACS Appl Mater Interfaces 8(30):19732–19738

    Article  Google Scholar 

  6. Raza MA, Westwood A, Brown A, Hondow N, Stirling C (2011) Characterisation of graphite nanoplatelets and the physical properties of graphite nanoplatelet/silicone composites for thermal interface applications. Carbon 49(13):4269–4279

    Article  Google Scholar 

  7. Meng F, Huang F, Guo Y, Chen J, Chen X, Hui D et al (2017) In situ intercalation polymerization approach to polyamide-6/graphite nanoflakes for enhanced thermal conductivity. Compos Part B 117:165–173

    Article  Google Scholar 

  8. Cho E-C, Huang J-H, Li C-P, Chang-Jian C-W, Lee K-C, Hsiao Y-S et al (2016) Graphene-based thermoplastic composites and their application for LED thermal management. Carbon 102:66–73

    Article  Google Scholar 

  9. Patti A, Russo P, Acierno D, Acierno S (2016) The effect of filler functionalization on dispersion and thermal conductivity of polypropylene/multi wall carbon nanotubes composites. Compos Part B 94:350–359

    Article  Google Scholar 

  10. Yu Z-T, Fang X, Fan L-W, Wang X, Xiao Y-Q, Zeng Y et al (2013) Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes. Carbon 53:277–285

    Article  Google Scholar 

  11. Uetani K, Ata S, Tomonoh S, Yamada T, Yumura M, Hata K (2014) Elastomeric thermal interface materials with high through-plane thermal conductivity from carbon fiber fillers vertically aligned by electrostatic flocking. Adv Mater 26(33):5857–5862

    Article  Google Scholar 

  12. Wang S, Cheng Y, Wang R, Sun J, Gao L (2014) Highly thermal conductive copper nanowire composites with ultralow loading: toward applications as thermal interface materials. ACS Appl Mater Interfaces 6(9):6481–6486

    Article  Google Scholar 

  13. Rai A, Moore AL (2017) Enhanced thermal conduction and influence of interfacial resistance within flexible high aspect ratio copper nanowire/polymer composites. Compos Sci Technol 144:70–78

    Article  Google Scholar 

  14. Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites. Adv Mater 20(24):4740–4744

    Article  Google Scholar 

  15. Roy CK, Bhavnani S, Hamilton MC, Johnson RW, Nguyen JL, Knight RW et al (2015) Investigation into the application of low melting temperature alloys as wet thermal interface materials. Int J Heat Mass Transf 85:996–1002

    Article  Google Scholar 

  16. Zeng X, Sun J, Yao Y, Sun R, Xu J-B, Wong C-P (2017) A combination of boron nitride nanotubes and cellulose nanofibers for the preparation of a nanocomposite with high thermal conductivity. ACS Nano 11(5):5167–5178

    Article  Google Scholar 

  17. Morishita T, Okamoto H (2016) Facile exfoliation and noncovalent superacid functionalization of boron nitride nanosheets and their use for highly thermally conductive and electrically insulating polymer nanocomposites. ACS Appl Mater Interfaces 8(40):27064–27073

    Article  Google Scholar 

  18. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y et al (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85

    Article  Google Scholar 

  19. Wang H, Gong J, Pei Y, Xu Z (2013) Thermal transfer in graphene-interfaced materials: contact resistance and interface engineering. ACS Appl Mater Interfaces 5(7):2599–2603

    Article  Google Scholar 

  20. Chen J, Huang X, Zhu Y, Jiang P (2017) Cellulose nanofiber supported 3D interconnected BN nanosheets for epoxy nanocomposites with ultrahigh thermal management capability. Adv Funct Mater 27(5):1604754

    Article  Google Scholar 

  21. Ngo I-L, Jeon S, Byon C (2016) Thermal conductivity of transparent and flexible polymers containing fillers: a literature review. Int J Heat Mass Transf 98:219–226

    Article  Google Scholar 

  22. Jo I, Pettes MT, Kim J, Watanabe K, Taniguchi T, Yao Z et al (2013) Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett 13(2):550–554

    Article  Google Scholar 

  23. Fang H, Bai S-L, Wong CP (2016) “White graphene”—hexagonal boron nitride based polymeric composites and their application in thermal management. Composites Communications 2:19–24

    Article  Google Scholar 

  24. Song X, Li Q, Ji J, Yan Z, Gu Y, Huo C et al (2016) A comprehensive investigation on CVD growth thermokinetics of h-BN white graphene. 2D Materials 3(3):035007

    Article  Google Scholar 

  25. Luo W, Wang Y, Hitz E, Lin Y, Yang B, Hu L (2017) Solution processed boron nitride nanosheets: synthesis, assemblies and emerging applications. Adv Funct Mater 27:1701450

    Article  Google Scholar 

  26. Bento JL, Brown E, Woltornist SJ, Adamson DH (2017) Thermal and electrical properties of nanocomposites based on self-assembled pristine graphene. Adv Funct Mater 27(1):1604277

    Article  Google Scholar 

  27. Liang Q, Yao X, Wang W, Liu Y, Wong CP (2011) A three-dimensional vertically aligned functionalized multilayer graphene architecture: an approach for graphene-based thermal interfacial materials. ACS Nano 5(3):2392–2401

    Article  Google Scholar 

  28. Wang Y, Xu N, Li D, Zhu J (2017) Thermal properties of two dimensional layered materials. Adv Funct Mater 27(19):1604134

    Article  Google Scholar 

  29. Huang Y, Su Y, Li S, Ouyang Q, Zhang G, Zhang L et al (2016) Fabrication of graphite film/aluminum composites by vacuum hot pressing: process optimization and thermal conductivity. Compos Part B 107:43–50

    Article  Google Scholar 

  30. Li S, Feng Y, Li Y, Feng W, Yoshino K (2016) Transparent and flexible films of horizontally aligned carbon nanotube/polyimide composites with highly anisotropic mechanical, thermal, and electrical properties. Carbon 109:131–140

    Article  Google Scholar 

  31. Peng L, Xu Z, Liu Z, Guo Y, Li P, Gao C (2017) Ultrahigh thermal conductive yet superflexible graphene films. Adv Mater 27:1701450

    Google Scholar 

  32. Wang D, Song P, Liu C, Wu W, Fan S (2008) Highly oriented carbon nanotube papers made of aligned carbon nanotubes. Nanotechnology 19(7):075609

    Article  Google Scholar 

  33. Zhang J, Wang X, Yu C, Li Q, Li Z, Li C et al (2017) A facile method to prepare flexible boron nitride/poly(vinyl alcohol) composites with enhanced thermal conductivity. Compos Sci Technol 149:41–47

    Article  Google Scholar 

  34. Yao Y, Zeng X, Wang F, Sun R, Xu J-B, Wong C-P (2016) Significant enhancement of thermal conductivity in bioinspired freestanding boron nitride papers filled with graphene oxide. Chem Mater 28(4):1049–1057

    Article  Google Scholar 

  35. Zhao W, Kong J, Liu H, Zhuang Q, Gu J, Guo Z (2016) Ultra-high thermally conductive and rapid heat responsive poly(benzobisoxazole) nanocomposites with self-aligned graphene. Nano 8(48):19984–19993

    Google Scholar 

  36. Kumar P, Yu S, Shahzad F, Hong SM, Kim Y-H, Koo CM (2016) Ultrahigh electrically and thermally conductive self-aligned graphene/polymer composites using large-area reduced graphene oxides. Carbon 101:120–128

    Article  Google Scholar 

  37. Zhang Y-F, Han D, Zhao Y-H, Bai S-L (2016) High-performance thermal interface materials consisting of vertically aligned graphene film and polymer. Carbon 109:552–557

    Article  Google Scholar 

  38. Shahil KM, Balandin AA (2012) Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett 12(2):861–867

    Article  Google Scholar 

  39. Zhang Y-F, Zhao Y-H, Bai S-L, Yuan X (2016) Numerical simulation of thermal conductivity of graphene filled polymer composites. Compos Part B 106:324–331

    Article  Google Scholar 

  40. Fang H, Bai S-L, Wong CP (2017) Thermal, mechanical and dielectric properties of flexible BN foam and BN nanosheets reinforced polymer composites for electronic packaging application. Compos A: Appl Sci Manuf 100:71–80

    Article  Google Scholar 

  41. Zhao Y-H, Wu Z-K, Bai S-L (2016) Thermal resistance measurement of 3D graphene foam/polymer composite by laser flash analysis. Int J Heat Mass Transf 101:470–475

    Article  Google Scholar 

  42. Kim K, Kim J (2016) Magnetic aligned AlN/epoxy composite for thermal conductivity enhancement at low filler content. Compos Part B 93:67–74

    Article  Google Scholar 

  43. Kim K, Ju H, Kim J (2016) Vertical particle alignment of boron nitride and silicon carbide binary filler system for thermal conductivity enhancement. Compos Sci Technol 123:99–105

    Article  Google Scholar 

  44. Kim K, Kim J (2016) Vertical filler alignment of boron nitride/epoxy composite for thermal conductivity enhancement via external magnetic field. Int J Therm Sci 100:29–36

    Article  Google Scholar 

  45. Lian G, Tuan C-C, Li L, Jiao S, Wang Q, Moon K-S et al (2016) Vertically aligned and interconnected graphene networks for high thermal conductivity of epoxy composites with ultralow loading. Chem Mater 28(17):6096–6104

    Article  Google Scholar 

  46. Hu J, Huang Y, Yao Y, Pan G, Sun J, Zeng X et al (2017) Polymer composite with improved thermal conductivity by constructing a hierarchically ordered three-dimensional interconnected network of BN. ACS Appl Mater Interfaces 9(15):13544–13553

    Article  Google Scholar 

  47. Li Q, Guo Y, Li W, Qiu S, Zhu C, Wei X et al (2014) Ultrahigh thermal conductivity of assembled aligned multilayer graphene/epoxy composite. Chem Mater 26(15):4459–4465

    Article  Google Scholar 

  48. Yu C, Zhang J, Li Z, Tian W, Wang L, Luo J et al (2017) Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Compos A: Appl Sci Manuf 98:25–31

    Article  Google Scholar 

  49. Chen H, Chen M, Di J, Xu G, Li H, Li Q (2012) Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials. J Phys Chem C 116(6):3903–3909

    Article  Google Scholar 

  50. Jiang Y, Liu Y, Min P, Sui G (2017) BN@PPS core-shell structure particles and their 3D segregated architecture composites with high thermal conductivities. Compos Sci Technol 144:63–69

    Article  Google Scholar 

  51. Ren P-G, Hou S-Y, Ren F, Zhang Z-P, Sun Z-F, Xu L (2016) The influence of compression molding techniques on thermal conductivity of UHMWPE/BN and UHMWPE/(BN + MWCNT) hybrid composites with segregated structure. Compos A: Appl Sci Manuf 90:13–21

    Article  Google Scholar 

  52. Kim K, Kim J (2016) Core-shell structured BN/PPS composite film for high thermal conductivity with low filler concentration. Compos Sci Technol 134:209–216

    Article  Google Scholar 

  53. Gao ZL, Zhang K, Yuen MM (2011) Fabrication of carbon nanotube thermal interface material on aluminum alloy substrates with low pressure CVD. Nanotechnology 22(26):265611

    Article  Google Scholar 

  54. Zhang K, Chai Y, Yuen MM, Xiao DG, Chan PC (2008) Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nanotechnology 19(21):215706

    Article  Google Scholar 

  55. Belkerk BE, Achour A, Zhang D, Sahli S, Djouadi MA, Yap YK (2016) Thermal conductivity of vertically aligned boron nitride nanotubes. Appl Phys Express 9(7):075002

    Article  Google Scholar 

  56. Jiang H, Wang Z, Geng H, Song X, Zeng H, Zhi C (2017) Highly flexible and self-healable thermal interface material based on boron nitride nanosheets and a dual cross-linked hydrogel. ACS Appl Mater Interfaces 9(11):10078–10084

    Article  Google Scholar 

  57. Kuang Z, Chen Y, Lu Y, Liu L, Hu S, Wen S et al (2015) Fabrication of highly oriented hexagonal boron nitride nanosheet/elastomer nanocomposites with high thermal conductivity. Small 11(14):1655–1659

    Article  Google Scholar 

  58. Boden A, Boerner B, Kusch P, Firkowska I, Reich S (2014) Nanoplatelet size to control the alignment and thermal conductivity in copper-graphite composites. Nano Lett 14(6):3640–3644

    Article  Google Scholar 

  59. Yu H, Li L, Zhang Y (2012) Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications. Scr Mater 66(11):931–934

    Article  Google Scholar 

  60. Chung DDL (2012) Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50(9):3342–3353

    Article  Google Scholar 

  61. Christensen A, Graham S (2009) Thermal effects in packaging high power light emitting diode arrays. Appl Therm Eng 29(2–3):364–371

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NNSFC Grant Nos. 51422305 and 51421061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yang.

Electronic supplementary material

ESM 1

(DOCX 341 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, CP., Bai, L., Bao, RY. et al. Electrically insulating POE/BN elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression. Adv Compos Hybrid Mater 1, 160–167 (2018). https://doi.org/10.1007/s42114-017-0013-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-017-0013-2

Keywords

Navigation