Skip to main content

Advertisement

Log in

Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Polyvinylidene fluoride (PVDF)/polyacrilonitrile (PAN)/multiwalled carbon nanotubes functionalized COOH (MWCNTs-COOH) nanocomposites with different contents of MWCNTs were fabricated by using electrospinning and solution cast methods. The interaction of the MWCNTs with the polymer blend was confirmed by a Fourier transform infrared (FTIR) spectroscopy study. The dispersion of the MWCNTs in the polymer blend was studied by scanning electron microscopy. The dispersion of the MWCNTs in the polymer matrix at different compositions has been examined by using scanning electron microscopy (SEM). Both individual and agglomerations of MWCNTs were evident. Multiwalled carbon nanotubes are capable of enhancing the impedance and electrical conductivity of PVDF-PAN/MWCNTs in a wide frequency range at different temperatures. Nanocomposites based on PVDF/PAN and MWCNTs as fillers show a significant enhancement in the electrical conductivity as a function of temperature. In addition, PVDF/PAN with 5.58 wt.% of MWCNTs has a much higher specific energy (129.7Wh/kg) compared to that of PVDF/PAN (15.57 Wh/kg).The results reveal that PVDF/PAN/MWCNTs composites have potential applications for nanogenerators, organic semiconductors, transducers, and electrical energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442(7100):282–286

    Article  Google Scholar 

  2. Wu M, Shaw L (2006) Electrical and mechanical behaviors of carbon nanotube-filled polymer blends. J Appl Polym Sci 99(2):477–488

    Article  Google Scholar 

  3. Yuen SM, Ma CCM, Chiang CL, Lin YY, Teng CC (2007) Preparation and morphological, electrical, and mechanical properties of polyimide-grafted MWCNT/polyimide composite. J Polym Sci A Polym Chem 45(15):3349–3358

    Article  Google Scholar 

  4. Aqeel SM, Küçükyavuz Z (2011) Characterization and electrical conductivity of poly (ethylene glycol)/polyacrylonitrile/multiwalled carbon nanotube composites. J Appl Polym Sci 119(1):142–147

    Article  Google Scholar 

  5. Aqeel SM, Wang Z, Than L, Sreenivasulu G, Zeng X (2015) Poly (vinylidene fluoride)/poly (acrylonitrile)–based superior hydrophobic piezoelectric solid derived by aligned carbon nanotubes in electrospinning: fabrication, phase conversion and surface energy. RSC Adv 5(93):76383–76391

    Article  Google Scholar 

  6. Wang Z, Colorad HA, Guo Z-H, Kim H, Park C-L, Hahn HT, Lee S-G, Lee K-H, Shang Y-Q (2012) Effective functionalization of carbon nanotubes for bisphenol F epoxy matrix composites. Mater Res 15(4):510–516

    Article  Google Scholar 

  7. Agarwal A, Bakshi SR, Lahiri D (2016) Carbon nanotubes: reinforced metal matrix composites. CRC press

  8. Wang Z, Lu M, Li H-L, Guo X-Y (2006) SWNTs–polystyrene composites preparations and electrical properties research. Mater Chem Phys 100(1):77–81

    Article  Google Scholar 

  9. Zhang L, Zhang Q, Xie H, Guo J, Lyu H, Li Y, Sun Z, Wang H, Guo Z (2017) Electrospun titania nanofibers segregated by graphene oxide for improved visible light photocatalysis. Appl Catal B Environ 201:470–478

    Article  Google Scholar 

  10. Wei H, Cui D, Ma J, Chu L, Zhao X, Song H, Liu H, Liu T, Wang N, Guo Z (2017) Energy conversion technologies towards self-powered electrochemical energy storage systems: the state of the art and perspectives. J Mater Chem A

  11. Huang B, Wang Z, Chen L, Xue R, Wang F (1996) The mechanism of lithium ion transport in polyacrylonitrile-based polymer electrolytes. Solid State Ionics 91(3):279–284

    Article  Google Scholar 

  12. Tatsuma T, Taguchi M, Iwaku M, Sotomura T, Oyama N (1999) Inhibition effects of polyacrylonitrile gel electrolytes on lithium dendrite formation. J Electroanal Chem 472(2):142–146

    Article  Google Scholar 

  13. Nalwa HS (1995) Ferroelectric polymers: chemistry: physics, and applications. CRC Press, Boca Raton

  14. Ducharme S, Reece TJ, Othon CM, Rannow RK (2005) Ferroelectric polymer Langmuir-Blodgett films for nonvolatile memory applications. IEEE Trans Device Mater Reliab 5(4):720–735

    Article  Google Scholar 

  15. Naber RC, Asadi K, Blom PW, de Leeuw DM, de Boer B (2010) Organic nonvolatile memory devices based on ferroelectricity. Adv Mater 22(9):933–945

    Article  Google Scholar 

  16. Guan F, Pan J, Wang J, Wang Q, Zhu L (2009) Crystal orientation effect on electric energy storage in poly (vinylidene fluoride-co-hexafluoropropylene) copolymers. Macromolecules 43(1):384–392

    Article  Google Scholar 

  17. Guan F, Yuan Z, Shu EW, Zhu L (2009) Fast discharge speed in poly (vinylidene fluoride) graft copolymer dielectric films achieved by confined ferroelectricity. Appl Phys Lett 94(5):052907

    Article  Google Scholar 

  18. Sreekumar TV, Liu T, Min BG, Guo H, Kumar S, Hauge RH, Smalley RE (2004) Polyacrylonitrile single-walled carbon nanotube composite fibers. Adv Mater 16(1):58–61

    Article  Google Scholar 

  19. Ko F, Gogotsi Y, Ali A, Naguib N, Ye H, Yang G, Li C, Willis P (2003) Electrospinning of continuous carbon nanotube-filled nanofiber yarns. Adv Mater 15(14):1161–1165

    Article  Google Scholar 

  20. Prilutsky S, Zussman E, Cohen Y (2010) Carbonization of electrospun poly (acrylonitrile) nanofibers containing multiwalled carbon nanotubes observed by transmission electron microscope with in situ heating. J Polym Sci B Polym Phys 48(20):2121–2128

    Article  Google Scholar 

  21. Huang J, Cao Y, Huang Z, Imbraguglio SA, Wang Z, Peng X, Guo Z (2016) Comparatively Thermal and Crystalline Study of Poly (methyl-methacrylate)/Polyacrylonitrile Hybrids: Core–Shell Hollow Fibers, Porous Fibers, and Thin Films. Macromol Mater Eng 301(11):1327–1336

    Article  Google Scholar 

  22. Guan X, Zheng G, Dai K, Liu C, Yan X, Shen C, Guo Z (2016) Carbon nanotubes-adsorbed electrospun PA66 nanofiber bundles with improved conductivity and robust flexibility. ACS Appl Mater Interfaces 8(22):14150–14159

    Article  Google Scholar 

  23. Ghafari E, Feng Y, Liu Y, Ferguson I, Lu N (2017) Investigating process-structure relations of ZnO nanofiber via electrospinning method. Compos Part B 116:40–45

    Article  Google Scholar 

  24. Heikkilä P, Harlin A (2008) Parameter study of electrospinning of polyamide-6. Eur Polym J 44(10):3067–3079

    Article  Google Scholar 

  25. Huang Z-M, Zhang Y-Z, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  Google Scholar 

  26. Varesano A, Carletto RA, Mazzuchetti G (2009) Experimental investigations on the multi-jet electrospinning process. J Mater Process Technol 209(11):5178–5185

    Article  Google Scholar 

  27. Kim JS, Reneker DH (1999) Polybenzimidazole nanofiber produced by electrospinning. Polym Eng Sci 39(5):849–854

    Article  Google Scholar 

  28. Fang X, Reneker D (1997) DNA fibers by electrospinning. J Macromol Sci Part B: Phys 36(2):169–173

    Article  Google Scholar 

  29. Park SJ, Cho MS, Lim ST, Choi HJ, Jhon MS (2005) Electrorheology of multiwalled carbon nanotube/poly (methyl methacrylate) nanocomposites. Macromol Rapid Commun 26(19):1563–1566

    Article  Google Scholar 

  30. Dong H, Nyame V, MacDiarmid AG, Jones WE (2004) Polyaniline/poly (methyl methacrylate) coaxial fibers: The fabrication and effects of the solution properties on the morphology of electrospun core fibers. J Polym Sci B Polym Phys 42(21):3934–3942

    Article  Google Scholar 

  31. Gopalan AI, Santhosh P, Manesh KM, Nho JH, Kim SH, Hwang C-G, Lee K-P (2008) Development of electrospun PVdF–PAN membrane-based polymer electrolytes for lithium batteries. J Membr Sci 325(2):683–690

    Article  Google Scholar 

  32. Yu H, Huang T, Lu M, Mao M, Zhang Q, Wang H (2013) Enhanced power output of an electrospun PVDF/MWCNTs-based nanogenerator by tuning its conductivity. Nanotechnology 24(40):405401

    Article  Google Scholar 

  33. Sahoo NG, Bao H, Pan Y, Pal M, Kakran M, Cheng HKF, Li L, Tan LP (2011) Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem Commun 47(18):5235–5237

    Article  Google Scholar 

  34. Trchová M, Šeděnková I, Tobolková E, Stejskal J (2004) FTIR spectroscopic and conductivity study of the thermal degradation of polyaniline films. Polym Degrad Stab 86(1):179–185

    Article  Google Scholar 

  35. Vasundhara K, Mandal BP, Tyagi AK (2015) Enhancement of dielectric permittivity and ferroelectricity of a modified cobalt nanoparticle and polyvinylidene fluoride based composite. RSC Adv 5(12):8591–8597

    Article  Google Scholar 

  36. Song R, Yang D, He L (2007) Effect of surface modification of nanosilica on crystallization, thermal and mechanical properties of poly (vinylidene fluoride). J Mater Sci 42(20):8408–8417

    Article  Google Scholar 

  37. He L, Sun J, Wang X, Yao L, Li J, Song R, Hao Y, He Y, Huang W (2011) Enhancement of β-crystalline phase of poly (vinylidene fluoride) in the presence of hyperbranched copolymer wrapped multiwalled carbon nanotubes. J Colloid Interface Sci 363(1):122–128

    Article  Google Scholar 

  38. Bao S, Liang G, Tjong SC (2011) Effect of mechanical stretching on electrical conductivity and positive temperature coefficient characteristics of poly (vinylidene fluoride)/carbon nanofiber composites prepared by non-solvent precipitation. Carbon 49(5):1758–1768

    Article  Google Scholar 

  39. Zhong G, Zhang L, Su R, Wang K, Fong H, Zhu L (2011) Understanding polymorphism formation in electrospun fibers of immiscible poly (vinylidene fluoride) blends. Polymer 52(10):2228–2237

    Article  Google Scholar 

  40. Gao Q, Scheinbeim JI (2000) Dipolar intermolecular interactions, structural development, and electromechanical properties in ferroelectric polymer blends of nylon-11 and poly (vinylidene fluoride). Macromolecules 33(20):7564–7572

    Article  Google Scholar 

  41. Almond D, West A (1987) The activation entropy for transport in ionic conductors. Solid State Ionics 23(1):27–35

    Article  Google Scholar 

  42. Jonscher AK (1977) Theuniversal'dielectric response. Nature 267:673–679

    Article  Google Scholar 

  43. Barik SK, Choudhary R, Singh A (2011) Ac impedance spectroscopy and conductivity studies of Ba0. 8Sr0. 2TiO3 ceramics. Adv Mater Lett 2(6):419–424

    Article  Google Scholar 

  44. Kim D, Kim Y, Choi K, Grunlan JC, Yu C (2009) Improved thermoelectric behavior of nanotube-filled polymer composites with poly (3, 4-ethylenedioxythiophene) poly (styrenesulfonate). ACS Nano 4(1):513–523

    Article  Google Scholar 

  45. Kang SD, Snyder GJ (2016) Charge-transport model for conducting polymers. Nat Mater 2: 252

  46. Yu A, Itkis ME, Bekyarova E, Haddon RC (2006) Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Appl Phys Lett 89(13):133102

    Article  Google Scholar 

  47. Du J, Zhao L, Zeng Y, Zhang L, Li F, Liu P, Liu C (2011) Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 49(4):1094–1100

    Article  Google Scholar 

  48. Kovacs JZ, Velagala BS, Schulte K, Bauhofer W (2007) Two percolation thresholds in carbon nanotube epoxy composites. Compos Sci Technol 67(5):922–928

    Article  Google Scholar 

  49. Carabineiro S, Pereira M, Nunes-Pereira J, Silva J, Caparrós C, Sencadas V, Lanceros-Méndez S (2012) The effect of nanotube surface oxidation on the electrical properties of multiwall carbon nanotube/poly (vinylidene fluoride) composites. J Mater Sci 47(23):8103–8111

    Article  Google Scholar 

  50. Reddy ALM, Ramaprabhu S (2007) Nanocrystalline metal oxides dispersed multiwalled carbon nanotubes as supercapacitor electrodes. J Phys Chem C 111(21):7727–7734

    Article  Google Scholar 

  51. Wang Q, Zhu L (2011) Polymer nanocomposites for electrical energy storage. J Polym Sci B Polym Phys 49(20):1421–1429

    Article  Google Scholar 

Download references

Acknowledgements

This publication was made possible by funding from the NIMHD-RCMI grant number 5G12MD007595 from the National Institute of Minority Health, Health Disparities and the NIGMS-BUILD grant number 8UL1GM118967 and National Science Foundation (Grant 1700429). This publication was also made possible by the Louisiana Cancer Research Consortium. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIMHD. The authors also appreciate the support of Nanhu Scholars Program for Young Scholars of Xinyang Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhen Liu or Zhe Wang.

Additional information

Salem M. Aqeel and Zhongyuan Huang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aqeel, S.M., Huang, Z., Walton, J. et al. Polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN)/carbon nanotube nanocomposites for energy storage and conversion. Adv Compos Hybrid Mater 1, 185–192 (2018). https://doi.org/10.1007/s42114-017-0002-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-017-0002-5

Keywords

Navigation