Skip to main content

Advertisement

Log in

Assessment of groundwater suitability in Tiruchirappalli district, Tamil Nadu, India, based on Water Quality Index (WQI)

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

In Tamil Nadu, India, the Tiruchirappalli district is located in the central part of the region. Hard rock formations from the Archaean to sedimentary formations from the Quaternary era are found within Tiruchirappalli district. The entire study area can determine hard rock and sedimentary rock regions. The groundwater system must be assessed for sustainability in response to population growth and agriculture intensification. During the Southwest Monsoon (SWM) season, 90 groundwater samples were collected and analyzed for major cations and anions. In the study area, the cation abundance of groundwater samples is arranged as Na2+ > Ca2+  > Mg2+ > K+ and major anions in this research region are distributed in the following order of relative abundance: HCO3 > SO42− > Cl > NO3. Water facies on the Piper plot include Ca–HCO3, Ca–Cl, Na–Cl, Na–HCO3, mixed Ca, Na–HCO3, and mixed Ca, Mg–Cl groundwater samples. The Durov diagram represents underground water's hydro-geochemical mechanisms and chemical exchange processes. Reverse ion exchange mechanisms and human origin mixture via rainfall recharge are represented in the research region. The plot of Gibbs implies that a rock dominance process precedes weathering of rock-forming components. Drinking and irrigation guidelines show that most water evaluated is safe for human consumption. Ion exchange, agricultural runoff, and human waste all influence water chemistry. Most Water Quality Index (WQI) samples fall into the excellent-to-good water category.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams, S. S., Titus, R., Pietersen, K., Tredoux, G., & Harris, C. (2001). Hydrochemical characteristics of aquifers near Sutherland in Western Karoo, South Africa. Journal of Hydrology, 241, 91–103.

    Article  CAS  Google Scholar 

  • Adimalla, N., Dhakate, R., Kasarla, A., & Taloor, A. K. (2020). Appraisal of groundwater quality for drinking and irrigation purposes in Central Telangana, India. Groundwater for Sustainable Development. https://doi.org/10.1016/j.gsd.2020.100334

    Article  Google Scholar 

  • Adimalla, N., Li, P., & Venkatayogi, S. (2018). Hydrogeochemical Evaluation of Groundwater Quality for Drinking and Irrigation Purposes and Integrated Interpretation with Water Quality Index Studies. Environmental Processes. https://doi.org/10.1007/s40710-018-0297-4

    Article  Google Scholar 

  • Adimalla, N., & Qian, H. (2019). Groundwater quality evaluation using water quality index (WQI) for drinking purposes and human health risk (HHR) assessment in an agricultural region of Nanganur, south India. Ecotoxicology and Environmental Safety, 176, 153–161. https://doi.org/10.1016/j.ecoenv.2019.03.066

    Article  CAS  Google Scholar 

  • Anand, B., Karunanidhi, D., Subramani, T., Srinivasamoorthy, K., & Suresh, M. (2019). Long-term trend detection and spatiotemporal analysis of groundwater levels using GIS techniques in Lower Bhavani River basin, Tamil Nadu, India. Environment Development and Sustainability. https://doi.org/10.1007/s10668-019-00318

    Article  Google Scholar 

  • Anithamary, I., Ramkumar, T., & Venkatramanan, S. (2012). Application of statistical analysis for the hydrogeochemistry of saline ground-water in Kodiakarai, Tamilnadu, India. Journal of Coastal Research, 281, 89–98.

    Google Scholar 

  • APHA. (1995). Standard methods for the examination of water and waste water (19th ed.). APHA.

    Google Scholar 

  • Aravinthasamy, P., Karunanidhi, D., Subramani, T., Srinivasamoorthy, K., & Anand, B. (2019). Geochemical evaluation of fluoride contamination in groundwater from Shanmuganadhi River basin South India: Implication on human health. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00452-x

    Article  Google Scholar 

  • Argamasilla, M., Barber, J., & Andreo, B. (2017). Factors controlling groundwater salinisation and hydrogeochemical processes in coastal aquifers from southern Spain. Science of the Total Environment, 580, 50–68.

    Article  CAS  Google Scholar 

  • Benouara, N., Laraba, A., & Rachedi, L. (2016). Assessment of groundwater quality in the Seraidi region (north-east of Algeria) using NSF-WQI. Water Science and Technology Water Supply, 16(4), 1132–1137.

    Article  Google Scholar 

  • Brown, R.M., McClelland, N.I., Deininger, R.A., & Tozer, R. (1970). A water quality index-do we dare. Water Sewage Works 117, 339–343.

  • Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographical information systems. Oxford University.

    Google Scholar 

  • Chaurasia, A. K., Pandey, H. K., Tiwari, S. K., Pandey, P., & Ram, A. (2021). Groundwater vulnerability assessment using water quality index (WQI) under geographic information system (GIS) framework in parts of Uttar Pradesh, India. Sustainable Water Resources Management. https://doi.org/10.1007/s40899-021-00513-z

    Article  Google Scholar 

  • Chen, J., Huang, Q., Lin, Y., Fang, Y., Qian, H., Liu, R., & Ma, H. (2019). Hydrogeochemical characteristics and quality assessment of groundwater in an irrigated region. Northwest China. Water (switzerland). https://doi.org/10.3390/w11010096

    Article  Google Scholar 

  • Chidambaram, S., Anandhan, P., Prasanna, M.V., Ramanathan, A., Srinivasamoorthy, K., & Senthil Kumar, G. (2012). Hydrogeochemical modelling for groundwater in Neyveli Aquifer, Tamil Nadu, India, using PHREEQC: a case study. Nat Res Res 21(3), 311–324. https://doi.org/10.1007/s11053-012-9180-6.

  • Coyte, R. M., Singh, A., Furst, K. E., Mitch, W. A., & Vengosh, A. (2019). Co-occurrence of geogenic and anthropogenic contaminants in groundwater from Rajasthan India. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.06.334

    Article  Google Scholar 

  • Doneen LD (1964) Notes on water quality in agriculture. In: Published as a Water Science and Engineering, Paper 4001, Department of Water Sciences and Engineering, University of California

  • Durov, S. A. (1948). Natural waters and graphic representation of their composition. Doklady Akad Nauk USSR, 59, 87–90.

    CAS  Google Scholar 

  • Eaton, E. M. (1950). Significance of carbonate in irrigation water. Soil Science, 69, 123–133.

    Article  CAS  Google Scholar 

  • Freeze, R. A., & Cherry, J. A. (1979). Groundwater. Prentice-Hall.

    Google Scholar 

  • Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170(3962), 1088–1090.

    Article  CAS  Google Scholar 

  • Gopinath, S., Srinivasamoorthy, K., Vasanthavigar, M., Saravanan, K., Prakash, R., Suma, S., & Senthilnathan, S. (2016). Hydrochemical characteristics and salinity of groundwater in parts of Nagapattinam district of Tamil Nadu and the Union Territory of Puducherry, India. Carbonates and Evaporites. https://doi.org/10.1007/s13146-016-0300-y

    Article  Google Scholar 

  • Gurugnanam, B., Suresh, M., Vinoth, M., Prabhakaran, N., & Kumaravel, S. (2003). GIS based microlevel approach for hydrogeochemical studies in upper Manimuktha sub basin, Vellar, South India. Indian Journal of Science and Technology, 2, 5–10.

    Article  Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water: US Geological Survey Water-Supply Paper 2254, 3rd edn, p. 263.

  • Horton, R. K. (1965). An index number system for rating water quality. Journal of Water Pollution Control Federation, 37(3), 300–306.

    Google Scholar 

  • Jalali, M., & Kolahchi, Z. (2008). Groundwater quality in an irrigated, agricultural area of northern Malayer, western Iran. Nutrient Cycling in Agroecosystems, 80, 95–105.

    Article  Google Scholar 

  • Jampani, M., Liedl, R., Hülsmann, S., Sonkamble, S., & Amerasinghe, P. (2020). Hydro-geochemical and mixing processes controlling groundwater chemistry in a wastewater irrigated agricultural system of India. Chemosphere, 239, 124741.

    Article  CAS  Google Scholar 

  • Jia, H., Qian, H., Zheng, L., Feng, W. W., Wang, H. K., & Gao, Y. Y. (2020). Alterations to groundwater chemistry due to modern water transfer for irrigation over decades. Science of the Total Environment, 717, 137170.

    Article  CAS  Google Scholar 

  • Kalaivanan, K., Gurugnanam, B., Pourghasemi, H. R., Suresh, M., & Kumaravel, S. (2018). Spatial assessment of groundwater quality using water quality index and hydrochemical indices in the Kodavanar sub-basin, Tamil Nadu, India. Sustainable Water Resources Management, 4(3), 627–641. https://doi.org/10.1007/s40899-017-0148-x

    Article  Google Scholar 

  • Karunaidhi, D., Aravinthaswamy, P., Subramani, T., Jianhu, W., & Srinivasamoorthy, K. (2019). Potential health risk assessment for fluoride and nitrate contamination in hard rock aquifers of Shanmuganadhi River basin, South India. Human and Ecological Risk Assessment: an International Journal. https://doi.org/10.1080/10807039.2019.1568859

    Article  Google Scholar 

  • Karunanidhi, D., Aravinthasamy, P., Subramani, T., & Muthusankar, G. (2021). Revealing drinking water quality issues and possible health risks based on water quality index (WQI) method in the Shanmuganadhi River basin of South India. Environmental Geochemistry and Health, 43(2), 931–948. https://doi.org/10.1007/s10653-020-00613-3

    Article  CAS  Google Scholar 

  • Kawo, N. S., & Karuppannan, S. (2018). Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, central Ethiopia. Journal of African Earth Sciences. https://doi.org/10.1016/j.jafrearsci.2018.06.034

    Article  Google Scholar 

  • Kelly, V. P. (1957). Alkali soils: Their formation properties and reclamations. Reinhold.

    Google Scholar 

  • Khan, R., & Jhariya, D. C. (2017). Groundwater quality assessment for drinking purpose in Raipur city, Chhattisgarh using water quality index and geographic information system. Journal of the Geological Society of India, 90, 69–76. https://doi.org/10.1007/s12594-017-0665-0

    Article  CAS  Google Scholar 

  • Kumar, M., Kumari, K., Ramanathan, A. L., & Saxena, R. (2007). A comparative evaluation of groundwater suitability for irrigation and drinking purposes in two intensively cultivated districts of Punjab, India. Environmental Geology, 53, 553–574.

    Article  CAS  Google Scholar 

  • Kumar, S. K., Logeshkumaran, A., Magesh, N. S., Godson, S. P., & Chandrasekar, N. (2015). Hydro-geochemistry and application of water quality index (WQI) for groundwater quality assessment, Anna Nagar, part of Chennai City, Tamil Nadu, India. Applied Water Science, 5, 335–343. https://doi.org/10.1007/s13201-014-0196-4

    Article  CAS  Google Scholar 

  • Liu, J., Gao, M., Jin, D., Wang, T., & Yang, J. (2020). Assessment of Groundwater Quality and Human Health Risk in the Aeolian-Sand Area of Yulin City, Northwest China. Exposure and Health. https://doi.org/10.1007/s12403-019-00326-8

    Article  Google Scholar 

  • Lloyd, J. A., & Heathcote, J. A. (1985). Natural inorganic hydrochemistry in relation to groundwater: An introduction (p. 296). Oxford Uni. Press.

    Google Scholar 

  • Loizidou, M., & Kapetanios, E. G. (1993). Effect of leachate from landfills on underground water quality. The Science of the Total Environment, 128, 69–81.

    Article  CAS  Google Scholar 

  • Mondal, N. C., Singh, V. P., Singh, V. S., & Saxena, V. S. (2010). Determining the interaction between groundwater and saline water through groundwater major ions chemistry. Journal of Hydrology, 388, 100–111.

    Article  CAS  Google Scholar 

  • Najib, S., Fadili, A., Mehdi, K., Riss, J., Makan, A., & Guessir, H. (2016). Salinization process and coastal groundwater quality in Chaouia, Morocco. Journal of African Earth Sciences, 115, 17–31.

    Article  CAS  Google Scholar 

  • Narsimha, A., & Sudarshan, V. (2013). Hydrogeochemistry of groundwater in Basara area, Adilabad district, Andhra Pradesh, India. Journal of Applied Geochemistry, 15(2), 224–237.

    CAS  Google Scholar 

  • Nasher, G., Al-Sayyaghi, A., & Al-Matary, A. (2013). Identification and evaluation of the hydrogeochemical processes of the lower part ofWadi Siham catchment area, Tihama plain, Yemen. Arabian Journal of Geosciences, 6(6), 2131–2146.

    Article  CAS  Google Scholar 

  • Nong, X. Z., Shao, D. G., Zhong, H., & Liang, J. K. (2020). Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Research, 178, 115781.

    Article  CAS  Google Scholar 

  • Ott, W. R. (1978). Water quality indices: A Survey of indices used in the United States. US Environmental Protection Agency.

    Google Scholar 

  • Paliwal, K. V. (1972). Irrigation with saline water. Monogram No. 2 (new series) (p. 198). IARI.

    Google Scholar 

  • Pant, N., Rai, S. P., Singh, R., Kumar, S., Saini, R. K., Purushothaman, P., Nijesh, P., Rawat, Y. S., Sharma, M., & Pratap, K. (2021). Impact of geology and anthropogenic activities over the water quality with emphasis on fluoride in water scarce Lalitpur district of Bundelkhandregion, India. Chemosphere, 279(April), 130496. https://doi.org/10.1016/j.chemosphere.2021.130496

    Article  CAS  Google Scholar 

  • Piper, A. M. (1944). A graphic procedure in the geochemical interpretations ofwater analyses. Transactions. American Geophysical Union, 25, 914–923.

    Article  Google Scholar 

  • Rajkumar, S., Srinivas, Y., Nair, N. C., & Arunbose, S. (2019). Groundwater quality and vertical electrical sounding data of the Valliyar River Basin, South West Coast of Tamil Nadu, India. Data in Brief. https://doi.org/10.1016/j.dib.2019.103919

    Article  Google Scholar 

  • Raju, N. J., Ram, P., & Dey, S. (2009). Groundwater quality in the lower Varuna River basin, Varanasi district, Uttar Pradesh. Journal of the Geological Society of India, 73(2), 178–192. https://doi.org/10.1007/s12594-009-0074-0

    Article  CAS  Google Scholar 

  • Ramesh K, and Elango L (2012) Groundwater quality and its suitability for domestic and agricultural use in Tondiar river basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 184, 3887–3899. https://doi.org/10.1007/s10661-011-2231-3.

  • Rao, N. S., Dinakar, A., Sravanthi, M., & Kumari, B. K. (2021). Geochemical characteristics and quality of groundwater evaluation for drinking, irrigation, and industrial purposes from a part of hard rock aquifer of South India. Environmental Science and Pollution Research, 28(24), 31941–31961. https://doi.org/10.1007/s11356-021-12404-z

    Article  CAS  Google Scholar 

  • Ravikumar, P., Aneesul Mehmood, M., & Somashekar, R. K. (2013). Water quality index to determine the surface water quality of Sankey tank and Mallathahalli lake, Bangalore urban district, Karnataka, India. Applied Water Science, 3, 247–261.

    Article  CAS  Google Scholar 

  • Richards, L. A. (1954a). Diagnosis and improvement of saline and alkali soils (pp. 98–99). Agricultural Handbook 60, USDA and IBH Publishing Co. Ltd.

    Google Scholar 

  • Richards, L. A. (1954b). Diagnosis and improvement of saline and alkalis soils (p. 160). US Department of Agriculture Handbook 60.

    Google Scholar 

  • Roy, A., Keesari, T., Mohokar, H., Sinha, U. K., & Bitra, S. (2018). Assessment of groundwater quality in hard rock aquifer of central Telangana state for drinking and agriculture purposes. Applied Water Science, 8(5), 10. https://doi.org/10.1007/s13201-018-0761-3

    Article  CAS  Google Scholar 

  • Sargazi, S., Mokhtari, M., Ehrampoush, M. H., Almodaresi, S. A., Sargazi, H., & Sarhadi, M. (2021). The application of geographical information system (GIS) approach for assessment of groundwater quality of Zahedan city, Sistan and Baluchestan Province, Iran. Groundwater for Sustainable Development, 12, 100509. https://doi.org/10.1016/J.GSD.2020.100509

    Article  Google Scholar 

  • Sarkar, M., Pal, S. C., & Islam, A. R. M. T. (2022). Groundwater quality assessment for safe drinking water and irrigation purposes in Malda district, Eastern India. Environmental Earth Sciences. https://doi.org/10.1007/s12665-022-10188-0

    Article  Google Scholar 

  • Silva, M. I., Gonçalves, A. M. L., Lopes, W. A., Lima, M. T. V., Costa, C. T. F., Paris, M., & De Paula Filho, F. J. (2021). Assessment of groundwater quality in a Brazilian semiarid basin using an integration of GIS, water quality index and multivariate statistical techniques. Journal of Hydrology, 598, 126346. https://doi.org/10.1016/J.JHYDROL.2021.126346

    Article  Google Scholar 

  • Sreedevi, P. D., Sreekanth, P. D., Ahmed, S., & Reddy, D. V. (2018). Appraisal of groundwater quality in crystalline aquifer; a chemometric approach. Arabian Journal of Geosciences, 11(9), 211.

    Article  Google Scholar 

  • Sreedevi, P. D., Sreekanth, P. D., Ahmed, S., & Reddy, D. V. (2019). Evaluation of groundwater quality for irrigation in a semi-arid region of South India. Sustainable Water Resources Management, 5(3), 1043–1056.

    Article  Google Scholar 

  • Srinivasamoorthy, K., Gopinath, M., Chidambaram, S., Vasanthavigar, M., & Sarma, V. S. (2014). Hydrochemical characterisation and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. Journal of King Saud University-Science, 26(1), 37–52. https://doi.org/10.1016/j.jksus.2013.08.001

    Article  Google Scholar 

  • Subba Rao, N. (2006). Seasonal variation of groundwater quality in a part of Guntur district, Andhra Pradesh, India. Environmental Geology, 49, 413–429.

    Article  Google Scholar 

  • Subba Rao, N., & Chaudhary, M. (2019). Hydrogeochemical processes regulating the spatial distribution of groundwater contamination, using pollution index of groundwater (PIG) and hierarchical cluster analysis (HCA): A case study. Groundwater for Sustainable Development. https://doi.org/10.1016/j.gsd.2019.100238

    Article  Google Scholar 

  • Subba Rao, N., Deepali, M., Dinakar, A., Chandana, I., Sunitha, B., & Ravindra, B. (2017). Geochemical characteristics and controlling factors of chemical composition of groundwater in a part of Guntur district, Andhra Pradesh, India. Environmental Earth Sciences, 76, 747. https://doi.org/10.1007/s12665-017-7093-8

    Article  CAS  Google Scholar 

  • Subba Rao, N., Surya Rao, P., Venkatram Reddy, G., Nagamani, M., Vidyasagar, G., & Satyanarayana, N. L. V. V. (2012). Chemical characteristics of groundwater and assessment of groundwater quality in Varaha River basin, Visakhapatnam district, Andhra Pradesh, India. Environmental Monitoring and Assessment, 184, 5189–5214. https://doi.org/10.1007/s10661-011-2333-y

    Article  CAS  Google Scholar 

  • Sudharshan Reddy, Y., Vangala, S., & Suvarna, B. (2020). Monitoring of groundwater quality for drinking purposes using the WQI method and its health implications around inactive mines in Vemula-Vempalli region, Kadapa District, South India. Applied Water Science, 10, 202. https://doi.org/10.1007/s13201-020-01284-2

    Article  CAS  Google Scholar 

  • Sundaray, S. K., Nayak, B. B., & Bhatta, D. (2009). Environmental studies on river water quality with reference to suitability for agricultural purposes: Mahanadi river estuarine system, India—A case study. Environmental Monitoring and Assessment, 55, 227–243.

    Article  Google Scholar 

  • Sunitha, V., Rajeswara, R. B., & Reddy, M. R. (2012). Ground Water Quality Evaluation with special reference to Fluoride and Nitrate Pollution in Uravakonda, Anantapur District, Andhra Pradesh—A case Study. International Journal of Research in Chemistry and Environme, 2(1), 88–96.

    CAS  Google Scholar 

  • Sunitha, V., & Reddy, Y. S. (2019). Hydrogeochemical evaluation of groundwater in and around Lakkireddipalli and Ramapuram, YSR District, Andhra Pradesh India. Hydro Research, 2, 85–96.

    Google Scholar 

  • Sunitha, V., Reddy, Y. S., Suvarna, B., & Reddy, B. M. (2022). Human health risk assessment (HHRA) of fluoride and nitrate using pollution index of groundwater (PIG) in and around hard rock terrain of Cuddapah, A.P. South India. Environmental Chemistry and Ecotoxicology, 4, 113–123. https://doi.org/10.1016/j.enceco.2021.12.002

    Article  Google Scholar 

  • Sutradhar, S., & Mondal, P. (2021). Groundwater suitability assessment based on water quality index and hydrochemical characterisation of Suri Sadar Sub-division, West Bengal. Ecological Informatics, 64(June), 101335. https://doi.org/10.1016/j.ecoinf.2021.101335

    Article  Google Scholar 

  • Thilagavathi, R., Chidambaram, S., Prasanna, M. V., Thivya, C., & Singaraja, C. (2012). A study on groundwater geochemistry and water quality in layered aquifers system of Pondicherry region, southeast India. Applied Water Science, 2, 253–269. https://doi.org/10.1007/s13201-012-0045-2

    Article  CAS  Google Scholar 

  • Thomson Jacob, C., Azariah, J., & Viji Roy, A. G. (1999). Impact of textile industries on river Noyyal and riverine groundwater quality of Tirupur, India. Pollution Research, 18(4), 359–368.

    Google Scholar 

  • Tiandra FL, Kondhoh A, Mohammed Aslam MA (2003) A conceptual database design for hydrology using GIS. In: Proceedings of Asia Pacific Association of Hydrology and Water Resources, pp 13–15.

  • Todd DK (1980) Groundwater hydrology (2nd ed.). John Wiley and Sons. New York. p 535.

  • Todd, D. K., & Mays, L. W. (2005a). Groundwater hydrology (3rd ed.). Wiley.

    Google Scholar 

  • USSL. (1954). Diagnosis and improvement of saline and alkali soils. United States Development Agency Handbook 60. Government Printing Office, Washington, DC, p 147.

  • Vasanthavigar, M., Srinivasamoorthy, K., & Prasanna, M. V. (2012). Evaluation of groundwater suitability for domestic, irrigational, and industrial purposes: A case study from Thirumanimuttar river basin, Tamilnadu, India. Environmental Monitoring and Assessment, 184, 405–420.

    Article  CAS  Google Scholar 

  • Vasanthavigar, M., Srinivasamoorthy, K., Rajiv Ganthi, R., Vijayaraghavan, K., & Sarma, V. S. (2010). Characterisation and quality assessment of groundwater with a special emphasis on irrigation utility: Thirumanimuttar sub-basin, Tamil Nadu, India. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-010-0190-6

    Article  Google Scholar 

  • Venkateswaran, S., & Deepa, S. (2015). Assessment of groundwater quality using GIS techniques in Vaniyar Watershed, Ponnaiyar River, Tamil Nadu. Aquatic Procedia, 4, 1283–1290. https://doi.org/10.1016/j.aqpro.2015.02.167

    Article  Google Scholar 

  • Verma, A., Yadav, B. K., & Singh, N. B. (2020). Hydrochemical monitoring of groundwater quality for drinking and irrigation use in Rapti Basin. SN Applied Sciences, 2, 460. https://doi.org/10.1007/s42452-020-2267-5

    Article  CAS  Google Scholar 

  • WHO. (2004). Guidelines for drinking water quality, vol. 1: Recommendations. Geneva: World Health Organisation.

    Google Scholar 

  • WHO. (2011). World Health Organisation Guidelines for Drinking Water Quality, 4rd Ed. Incorporating the First and Second Addenda, vol. 1. Recommendation, Geneva.

  • Wilcox, L. V. (1955). Classification and use of irrigation waters, vol. 969. USDA Circular No., p. 19

  • Wu, J., Zhang, Y., & Zhou, H. (2020). Groundwater chemistry and groundwater quality index incorporating health risk weighting in Dingbian County, Ordos Basin of Northwest China. Geochemistry. https://doi.org/10.1016/j.chemer.2020.125607

    Article  Google Scholar 

  • Yang, Q., Li, Z., Ma, H., Wang, L., & Martín, J. D. (2016). Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos basin, China. Environmental Pollution, 218, 879–888. https://doi.org/10.1016/j.envpol.2016.08.017

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kalaivanan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanthi, D., Kalaivanan, K. & Sankar, K. Assessment of groundwater suitability in Tiruchirappalli district, Tamil Nadu, India, based on Water Quality Index (WQI). Int J Energ Water Res (2022). https://doi.org/10.1007/s42108-022-00223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42108-022-00223-y

Keywords

Navigation