Skip to main content

Advertisement

Log in

Delineation of groundwater potential zones through the integration of remote sensing, geographic information system, and multi-criteria decision-making technique in the sub-Himalayan foothills region, India

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

The deficiency in groundwater resources worldwide is an alarming issue in the contemporary context, and hence it is significant to analyze the groundwater potential zones (GPZs). The spatial distribution of GPZs assists in identifying the areas with groundwater potentiality and scarcity. The sub-Himalayan foothills region of West Bengal is experiencing high demand for groundwater due to the expansion of anthropogenic activities. Thus, the present work intends to delineate GPZs through integrating remote sensing (RS), geographic information system (GIS), and multi-criteria decision-making (MCDM) technique in the sub-Himalayan foothills district of West Bengal in eastern India. Many predominant thematic criteria (N = 9), e.g., hydrogeology (HG), elevation (EV), slope (SL), drainage density (DD), lineament density (LD), geomorphology (GEOM), soil (S), annual rainfall (AR), and land-use land cover (LULC), were applied to manifest a reliable outcome. The resulting GPZs map demonstrates ‘moderate’ groundwater potential zone (GPZ) that encompasses all over the parts of the district, covering the highest area (i.e., 73%), while the ‘very good’ GPZ has the lowest extent, observed only in the south-eastern part. Furthermore, micro-level (block-wise) assessment of GPZs has been conducted and illustrated that Mal, Matiali, Rajganj emphasized 8.45%, 6.93%, 4.67%, respectively, areas with ‘low’ groundwater potentiality. In comparison, only Dhupguri block shows very high (only 1.22%) potentiality in the south and south-eastern parts. The produced GPZs map is validated through the acquired data of various dug wells and groundwater fluctuation from the Central Groundwater Board (CGWB). The GPZs were also statistically verified through ROC-AUC assessment, and the result shows that 71.50% area falls under the curve. The findings of the work will be helpful for planners, policy-makers, government agencies, and stakeholders to design sustainable and environment-friendly planning for the concerned region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abd Manap, M., Sulaiman, W. N. A., Ramli, M. F., Pradhan, B., & Surip, N. (2013). A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia. Arabian Journal of Geosciences, 6(5), 1621–1637. https://doi.org/10.1007/s12517-011-0469-2

    Article  Google Scholar 

  • Achu, A. L., Thomas, J., & Reghunath, R. (2020). Multi-criteria decision analysis for delineation of groundwater potential zones in a tropical river basin using remote sensing, GIS and analytical hierarchy process (AHP). Groundwater for Sustainable Development, 10, 100365. https://doi.org/10.1016/j.gsd.2020.100365

    Article  Google Scholar 

  • Adiat, K. A. N., Nawawi, M. N. M., & Abdullah, K. (2012). Integration of geographic information system and 2D imaging to investigate the effects of subsurface conditions on flood occurrence. Modern Applied Science, 6(3), 11. https://doi.org/10.5539/mas.v6n3p11

    Article  Google Scholar 

  • Agarwal, R., & Garg, P. K. (2016). Remote sensing and GIS based groundwater potential & recharge zones mapping using multi-criteria decision making technique. Water Resources Management, 30(1), 243–260. https://doi.org/10.1007/s11269-015-1159-8

    Article  Google Scholar 

  • Akinci, H., Özalp, A. Y., & Turgut, B. (2013). Agricultural land use suitability analysis using GIS and AHP technique. Computers and Electronics in Agriculture, 97, 71–82. https://doi.org/10.1016/j.compag.2013.07.006

    Article  Google Scholar 

  • Al-Djazouli, M. O., Elmorabiti, K., Rahimi, A., Amellah, O., & Fadil, O. A. M. (2020). Delineating of groundwater potential zones based on remote sensing, GIS and analytical hierarchical process: A case of Waddai, eastern Chad. GeoJournal. https://doi.org/10.1007/s10708-020-10160-0

    Article  Google Scholar 

  • Allafta, H., Opp, C., & Patra, S. (2021). Identification of groundwater potential zones using remote sensing and GIS techniques: A case study of the Shatt Al-Arab Basin. Remote Sensing, 13(1), 112. https://doi.org/10.3390/rs13010112

    Article  Google Scholar 

  • Arkoprovo, B., Adarsa, J., & Prakash, S. S. (2012). Delineation of groundwater potential zones using satellite remote sensing and geographic information system techniques: a case study from Ganjam district, Orissa, India. Research Journal of Recent Sciences, 1(9), 59–66. ISSN: 277-2502.

  • Arunprakash, M., Giridharan, L., Krishnamurthy, R. R., & Jayaprakash, M. (2014). Impact of urbanization in groundwater of south Chennai City, Tamil Nadu, India. Environmental Earth Sciences, 71(2), 947–957. https://doi.org/10.1007/s12665-013-2496-7

    Article  Google Scholar 

  • Aykut, T. (2021). Determination of groundwater potential zones using Geographical Information Systems (GIS) and Analytic Hierarchy Process (AHP) between Edirne-Kalkansogut (northwestern Turkey). Groundwater for Sustainable Development, 12, 100545. https://doi.org/10.1016/j.gsd.2021.100545

    Article  Google Scholar 

  • Azimi, S., Moghaddam, M. A., & Monfared, S. H. (2019). Prediction of annual drinking water quality reduction based on Groundwater Resource Index using the artificial neural network and fuzzy clustering. Journal of Contaminant Hydrology, 220, 6–17. https://doi.org/10.1016/j.jconhyd.2018.10.010

    Article  CAS  Google Scholar 

  • Balha, A., Vishwakarma, B. D., Pandey, S., & Singh, C. K. (2020). Predicting impact of urbanization on water resources in megacity Delhi. Remote Sensing Applications: Society and Environment, 20, 100361. https://doi.org/10.1016/j.rsase.2020.100361

    Article  Google Scholar 

  • Bera, A., Mukhopadhyay, B. P., & Barua, S. (2020). Delineation of groundwater potential zones in Karha river basin, Maharashtra, India, using AHP and geospatial techniques. Arabian Journal of Geosciences, 13(15), 1–21. https://doi.org/10.1007/s12517-020-05702-2

    Article  Google Scholar 

  • Berhanu, K. G., & Hatiye, S. D. (2020). Identification of groundwater potential zones using proxy data: Case study of Megech watershed, Ethiopia. Journal of Hydrology: Regional Studies, 28, 100676. https://doi.org/10.1016/j.ejrh.2020.100676

    Article  Google Scholar 

  • Bhushan, S. (2017). Environmental consequences of the Green Revolution in India 1. In Indian Agriculture after the Green Revolution (pp. 183-197), Routledge.

  • Biswas, S., Mukhopadhyay, B. P., & Bera, A. (2020). Delineating groundwater potential zones of agriculture dominated landscapes using GIS based AHP techniques: A case study from Uttar Dinajpur district, West Bengal. Environmental Earth Sciences, 79(12), 1–25. https://doi.org/10.1007/s12665-020-09053-9

    Article  CAS  Google Scholar 

  • Boughariou, E., Allouche, N., Brahim, F. B., Nasri, G., & Bouri, S. (2021). Delineation of groundwater potentials of Sfax region, Tunisia, using fuzzy analytical hierarchy process, frequency ratio, and weights of evidence models. Environment, Development and Sustainability. https://doi.org/10.1007/s10668-021-01270-x

    Article  Google Scholar 

  • Central Ground Water Board (CGWB). (2019). National Compilation on Dynamic Ground Water Resources of India, 2017, Ministry of Jal Shakti, Department of Water Resources, River Development and Ganga Rejuvenation, Government of India. http://cgwb.gov.in/.

  • Central Ground Water Board (CGWB). (2020). Ground Water Year Book of West Bengal & Andaman & Nicobar Islands (2019–2020), Ministry of Jal Shakti, Department of Water Resources, River Development and Ganga Rejuvenation, Government of India. http://cgwb.gov.in/.

  • Chakraborty, S., Maity, P. K., & Das, S. (2020). Investigation, simulation, identification and prediction of groundwater levels in coastal areas of Purba Midnapur, India, using MODFLOW. Environment, Development and Sustainability, 22(4), 3805–3837. https://doi.org/10.1007/s10668-019-00344-1

    Article  Google Scholar 

  • Chen, W., Li, H., Hou, E., Wang, S., Wang, G., Panahi, M., Li, T., Peng, T., Guo, C., Niu, C., & Xiao, L. (2018). GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Science of the Total Environment, 634, 853–867. https://doi.org/10.1016/j.scitotenv.2018.04.055

    Article  CAS  Google Scholar 

  • Choudhury, P., Gahalaut, K., Dumka, R., Gahalaut, V. K., Singh, A. K., & Kumar, S. (2018). GPS measurement of land subsidence in Gandhinagar, Gujarat (Western India), due to groundwater depletion. Environmental Earth Sciences, 77(22), 1–5. https://doi.org/10.1007/s12665-018-7966-5

    Article  Google Scholar 

  • Custodio, E. (2002). Aquifer overexploitation: What does it mean? Hydrogeology Journal, 10(2), 254–277. https://doi.org/10.1007/s10040-002-0188-6

    Article  Google Scholar 

  • Dey, S., Bhatt, D., Haq, S., & Mall, R. K. (2020). Potential impact of rainfall variability on groundwater resources: A case study in Uttar Pradesh, India. Arabian Journal of Geosciences, 13(3), 1–11. https://doi.org/10.1007/s12517-020-5083-8

    Article  Google Scholar 

  • Díaz-Alcaide, S., & Martínez-Santos, P. (2019). Advances in groundwater potential mapping. Hydrogeology Journal, 27(7), 2307–2324. https://doi.org/10.1007/s10040-019-02001-3

    Article  Google Scholar 

  • District Census Handbook (DCH), Jalpaiguri. (2011). https://censusindia.gov.in/2011census/dchb/DCHB_A/19/1902_PART_A_DCHB_JALPAIGURI.pdf

  • District Profile, Jalpaiguri. (2021). Official website of Jalpaiguri. Government of West Bengal. Retrieved from: http://www.jalpaiguri.gov.in/district-profile.

  • Forootan, E., & Seyedi, F. (2021). GIS-based multi-criteria decision making and entropy approaches for groundwater potential zones delineation. Earth Science Informatics, 14(1), 333–347. https://doi.org/10.1007/s12145-021-00576-8

    Article  Google Scholar 

  • Gansser, A. (1964). Geology of Himalayas. Interscience.

    Google Scholar 

  • Gupta, D., Yadav, S., Tyagi, D., & Tomar, L. (2018). Multi-criteria decision analysis for identifying of groundwater potential sites in Haridwar, India. The Engineering Journal of Application & Scopes, 3(2), 9–15. ISSN: 2456-0472.

  • Halder, S., Roy, M. B., & Roy, P. K. (2020). Fuzzy logic algorithm based analytic hierarchy process for delineation of groundwater potential zones in complex topography. Arabian Journal of Geosciences, 13(13), 1–22. https://doi.org/10.1007/s12517-020-05525-1

    Article  CAS  Google Scholar 

  • Horňáková, N., Jurík, L., Hrablik Chovanová, H., Cagáňová, D., & Babčanová, D. (2021). AHP method application in selection of appropriate material handling equipment in selected industrial enterprise. Wireless Networks, 27(3), 1683–1691. https://doi.org/10.1007/s11276-019-02050-2

    Article  Google Scholar 

  • Huguette, T. M. M., Sandra, A. N. G., & Hermann, F. D. (2021). GIS, Remote Sensing and Analytical Hierarchy Process-Based Identification of Groundwater Potential Zones in Mokolo, Northern Cameroon. International Journal of Multidisciplinary and Current Research. https://doi.org/10.14741/ijmcr/v.9.3.5

    Article  Google Scholar 

  • IPCC. (2001). Climate Change 2001: The Scientific Basis. In Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (Eds.), Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press

  • Jain, M., Fishman, R., Mondal, P., Galford, G. L., Bhattarai, N., Naeem, S., Lall, U., & DeFries, R. S. (2021). Groundwater depletion will reduce cropping intensity in India. Science Advances, 7(9), eabd2849.

    Article  Google Scholar 

  • Joshi, P. K., & Tyagi, N. K. (1991). Sustainability of existing farming system in Punjab and Haryana-some issues on groundwater use. Indian Journal of Agricultural Economics, 46(902-2018-2855), 412–421, ISSN: 0019-5014.

  • Kalvoda, J. (1972). Geomorphological studies in the Himalaya with special reference to the landslides and allied phenomena. Himalayan Geology, 2, 301–316.

    Google Scholar 

  • Kaya, E., Agca, M., Adiguzel, F., & Cetin, M. (2019). Spatial data analysis with R programming for environment. Human and Ecological Risk Assessment: An International Journal, 25(6), 1521–1530.

    Article  CAS  Google Scholar 

  • Kayastha, P., Dhital, M. R., & De Smedt, F. (2013). Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Computers & Geosciences, 52, 398–408. https://doi.org/10.1016/j.cageo.2012.11.003

    Article  Google Scholar 

  • Kumar, A., & Krishna, A. P. (2018). Assessment of groundwater potential zones in coal mining impacted hard-rock terrain of India by integrating geospatial and analytic hierarchy process (AHP) approach. Geocarto International, 33(2), 105–129. https://doi.org/10.1080/10106049.2016.1232314

    Article  Google Scholar 

  • Kumar, R., & Anbalagan, R. (2016). Landslide susceptibility mapping using analytical hierarchy process (AHP) in Tehri reservoir rim region, Uttarakhand. Journal of the Geological Society of India, 87(3), 271–286. https://doi.org/10.1007/s12594-016-0395-8

    Article  Google Scholar 

  • Kumar, T., Gautam, A. K., & Kumar, T. (2014). Appraising the accuracy of GIS-based multi-criteria decision making technique for delineation of groundwater potential zones. Water Resources Management, 28(13), 4449–4466. https://doi.org/10.1007/s11269-014-0663-6

    Article  Google Scholar 

  • Magesh, N. S., Chandrasekar, N., & Soundranayagam, J. P. (2012). Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geoscience Frontiers, 3(2), 189–196. https://doi.org/10.1016/j.gsf.2011.10.007

    Article  Google Scholar 

  • Mahato, S., & Pal, S. (2019). Groundwater potential mapping in a rural river basin by union (OR) and intersection (AND) of four multi-criteria decision-making models. Natural Resources Research, 28(2), 523–545. https://doi.org/10.1007/s11053-018-9404-5

    Article  Google Scholar 

  • Mohammadi-Behzad, H. R., Charchi, A., Kalantari, N., Nejad, A. M., & Vardanjani, H. K. (2019). Delineation of groundwater potential zones using remote sensing (RS), geographical information system (GIS) and analytic hierarchy process (AHP) techniques: A case study in the Leylia-Keynow watershed, southwest of Iran. Carbonates and Evaporites, 34(4), 1307–1319. https://doi.org/10.1007/s13146-018-0420-7

    Article  Google Scholar 

  • Mondal, P., & Dalai, A. K. eds. (2017). Sustainable utilization of natural resources. CRC Press.

  • Mosavi, A., Hosseini, F. S., Choubin, B., Goodarzi, M., Dineva, A. A., & Sardooi, E. R. (2021). Ensemble boosting and bagging based machine learning models for groundwater potential prediction. Water Resources Management, 35(1), 23–37. https://doi.org/10.1007/s11269-020-02704-3

    Article  Google Scholar 

  • Muavhi, N., Thamaga, K. H., & Mutoti, M. I. (2021). Mapping groundwater potential zones using Relative Frequency Ratio, Analytic Hierarchy Process and their Hybrid Models: Case of Nzhelele-Makhado Area in South Africa. Geocarto International. https://doi.org/10.1080/10106049.2021.1936212

    Article  Google Scholar 

  • Mukherjee, A., Bhanja, S. N., & Wada, Y. (2018). Groundwater depletion causing reduction of baseflow triggering Ganges river summer drying. Scientific Reports, 8(1), 1–9. https://doi.org/10.1038/s41598-018-30246-7

    Article  CAS  Google Scholar 

  • Mukherjee, I., & Singh, U. K. (2020). Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using GIS and analytical hierarchical process techniques. CATENA, 194, 104681. https://doi.org/10.1016/j.catena.2020.104681

    Article  Google Scholar 

  • Mukherjee, K. (1996). Agricultural Land Capability of West Bengal. D. Mukherjee, pp. 7–56.

  • Muniraj, K., Jesudhas, C. J., & Chinnasamy, A. (2020). Delineating the groundwater potential zone in Tirunelveli Taluk, South Tamil Nadu, India, using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Proceedings of the National Academy of Sciences, India Section a: Physical Sciences, 90(4), 661–676. https://doi.org/10.1007/s40010-019-00608-5

    Article  Google Scholar 

  • Murmu, P., Kumar, M., Lal, D., Sonker, I., & Singh, S. K. (2019). Delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand, India. Groundwater for Sustainable Development, 9, 100239. https://doi.org/10.1016/j.gsd.2019.100239

    Article  Google Scholar 

  • Nasir, M. J., Khan, S., Zahid, H., & Khan, A. (2018). Delineation of groundwater potential zones using GIS and multi influence factor (MIF) techniques: A study of district Swat, Khyber Pakhtunkhwa, Pakistan. Environmental Earth Sciences, 77(10), 1–11. https://doi.org/10.1007/s12665-018-7522-3

    Article  Google Scholar 

  • Nithya, C. N., Srinivas, Y., Magesh, N. S., & Kaliraj, S. (2019). Assessment of groundwater potential zones in Chittar basin, Southern India using GIS based AHP technique. Remote Sensing Applications: Society and Environment, 15, 100248. https://doi.org/10.1016/j.rsase.2019.100248

    Article  Google Scholar 

  • Nohani, E., Maroufinia, E., & Khosravi, K. (2017). Groundwater Potential Mapping of the Al-shtar Plain Using Evidential Belief Function Model. Iranian Journal of Irrigation & Drainage, 11(4), 698–707.

    Google Scholar 

  • Oikonomidis, D., Dimogianni, S., Kazakis, N., & Voudouris, K. (2015). A GIS/remote sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. Journal of Hydrology, 525, 197–208. https://doi.org/10.1016/j.jhydrol.2015.03.056

    Article  Google Scholar 

  • Omosuyi, G. O., Oshodi, D. R., Sanusi, S. O., & Adeyemo, I. A. (2021). Groundwater potential evaluation using geoelectrical and analytical hierarchy process modeling techniques in Akure-Owode, southwestern Nigeria. Modeling Earth Systems and Environment, 7(1), 145–158. https://doi.org/10.1007/s40808-020-00915-6

    Article  Google Scholar 

  • Ouma, Y. O., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water, 6(6), 1515–1545. https://doi.org/10.3390/w6061515

    Article  Google Scholar 

  • Owolabi, S. T., Madi, K., Kalumba, A. M., & Orimoloye, I. R. (2020). A groundwater potential zone mapping approach for semi-arid environments using remote sensing (RS), geographic information system (GIS), and analytical hierarchical process (AHP) techniques: a case study of Buffalo catchment, Eastern Cape, South Africa. Arabian Journal of Geosciences, 13(22), 1–17. https://doi.org/10.1007/s12517-020-06166-0

    Article  Google Scholar 

  • Ozel, H. U., Ozel, H. B., Cetin, M., Sevik, H., Gemici, B. T., & Varol, T. (2019). Base alteration of some heavy metal concentrations on local and seasonal in Bartin River. Environmental Monitoring and Assessment, 191(9), 1–15.

    Google Scholar 

  • Pal, S., Kundu, S., & Mahato, S. (2020). Groundwater potential zones for sustainable management plans in a river basin of India and Bangladesh. Journal of Cleaner Production, 257, 120311. https://doi.org/10.1016/j.jclepro.2020.120311

    Article  Google Scholar 

  • Parry, J. A., Ganaie, S. A., & Bhat, M. S. (2018). GIS based land suitability analysis using AHP model for urban services planning in Srinagar and Jammu urban centers of J&K, India. Journal of Urban Management, 7(2), 46–56. https://doi.org/10.1016/j.jum.2018.05.002

    Article  Google Scholar 

  • Patra, S., Mishra, P., & Mahapatra, S. C. (2018). Delineation of groundwater potential zone for sustainable development: A case study from Ganga Alluvial Plain covering Hooghly district of India using remote sensing, geographic information system and analytic hierarchy process. Journal of Cleaner Production, 172, 2485–2502. https://doi.org/10.1016/j.jclepro.2017.11.161

    Article  Google Scholar 

  • Periyasamy, P., Yagoub, M. M., & Sudalaimuthu, M. (2018). Flood vulnerable zones in the rural blocks of Thiruvallur district, South India. Geoenvironmental Disasters, 5(1), 1–16. https://doi.org/10.1186/s40677-018-0113-5

    Article  Google Scholar 

  • Pinto, D., Shrestha, S., Babel, M. S., & Ninsawat, S. (2017). Delineation of groundwater potential zones in the Comoro watershed, Timor Leste using GIS, remote sensing and analytic hierarchy process (AHP) technique. Applied Water Science, 7(1), 503–519. https://doi.org/10.1007/s13201-015-0270-6

    Article  CAS  Google Scholar 

  • Pohekar, S. D., & Ramachandran, M. (2004). Application of multi-criteria decision making to sustainable energy planning—A review. Renewable and Sustainable Energy Reviews, 8(4), 365–381. https://doi.org/10.1016/j.rser.2003.12.007

    Article  Google Scholar 

  • Pradhan, A. M. S., Kim, Y. T., Shrestha, S., Huynh, T. C., & Nguyen, B. P. (2021). Application of deep neural network to capture groundwater potential zone in mountainous terrain, Nepal Himalaya. Environmental Science and Pollution Research, 28(15), 18501–18517. https://doi.org/10.1007/s11356-020-10646-x

    Article  Google Scholar 

  • Prasad, R. K., Mondal, N. C., Banerjee, P., Nandakumar, M. V., & Singh, V. S. (2008). Deciphering potential groundwater zone in hard rock through the application of GIS. Environmental Geology, 55(3), 467–475. https://doi.org/10.1007/s00254-007-0992-3

    Article  Google Scholar 

  • Rabet, A., Dastranj, A., Asadi, S., & Asadi Nalivan, O. (2020). Determination of groundwater potential using artificial neural network, Random forest, support vector machine and linear regression models (Case study: Lake Urmia watershed). Iranian Journal of Ecohydrology, 7(4), 1047–1060. https://doi.org/10.22059/IJE.2020.307329.1362

    Article  Google Scholar 

  • Rajasekhar, M., Sudarsana Raju, G., Bramaiah, C., Deepthi, P., Amaravathi, Y., & Siddi Raju, R. (2018). Delineation of groundwater potential zones of semi-arid region of YSR Kadapa District, Andhra Pradesh, India using RS, GIS and analytic hierarchy process. Remote Sensing of Land, 2(2), 76–86. https://doi.org/10.21523/gcj1.18020201

    Article  Google Scholar 

  • Rashed, T., & Weeks, J. (2003). Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. International Journal of Geographical Information Science, 17(6), 547–576. https://doi.org/10.1080/1365881031000114071

    Article  Google Scholar 

  • Ray, B., & Shaw, R. (2016). Water stress in the megacity of Kolkata, India, and its implications for urban resilience. In Urban disasters and resilience in Asia (pp. 317–336). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-12-802169-9.00020-3

  • Roy, S. (2011). Flood Hazards in Jalpaiguri District. Unpublished Ph.D. Thesis, Department of Applied Geography, University of North Bengal, Siliguri. https://ir.nbu.ac.in/handle/123456789/1335

  • Roy, S., Bose, A., & Mandal, G. (2021). Modeling and mapping geospatial distribution of groundwater potential zones in Darjeeling Himalayan region of India using analytical hierarchy process and GIS technique. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-021-01174-9

    Article  Google Scholar 

  • Rudra, K. (2019). Interrelationship between surface and groundwater: the case of West Bengal. In Ground Water Development-Issues and Sustainable Solutions (pp. 175–181). Springer. https://doi.org/10.1007/978-981-13-1771-2_10

  • Saaty, T. L. (1980). The analytical hierarchy process. McGraw-Hill.

    Google Scholar 

  • Saaty, T. L. (1990). How to make a decision: The analytic hierarchy process. European Journal of Operational Research, 48(1), 9–26.

    Article  Google Scholar 

  • Saaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83–98. https://doi.org/10.1504/IJSSci.2008.01759

    Article  Google Scholar 

  • Sachdeva, S., & Kumar, B. (2021). Comparison of gradient boosted decision trees and random forest for groundwater potential mapping in Dholpur (Rajasthan), India. Stochastic Environmental Research and Risk Assessment, 35(2), 287–306. https://doi.org/10.1007/s00477-020-01891-0

    Article  Google Scholar 

  • Sahoo, S., Dhar, A., Kar, A., & Ram, P. (2017). Grey analytic hierarchy process applied to effectiveness evaluation for groundwater potential zone delineation. Geocarto International, 32(11), 1188–1205. https://doi.org/10.1080/10106049.2016.1195888

    Article  Google Scholar 

  • Saranya, T., & Saravanan, S. (2020). Groundwater potential zone mapping using analytical hierarchy process (AHP) and GIS for Kancheepuram District, Tamilnadu, India. Modeling Earth Systems and Environment. https://doi.org/10.1007/s40808-020-00744-7

    Article  Google Scholar 

  • Saravanan, S., Saranya, T., Jennifer, J. J., Singh, L., Selvaraj, A., & Abijith, D. (2020). Delineation of groundwater potential zone using analytical hierarchy process and GIS for Gundihalla watershed, Karnataka, India. Arabian Journal of Geosciences, 13(15), 1–17. https://doi.org/10.1007/s12517-020-05712-0

    Article  Google Scholar 

  • Schmoldt, D., Kangas, J., Mendoza, G. A., & Pesonen, M. (Eds.). (2013). The analytic hierarchy process in natural resource and environmental decision making (Vol. 3). Springer Science & Business Media.

    Google Scholar 

  • Sekhri, S. (2013). Missing water: agricultural stress and adaptation strategies in response to groundwater depletion in India. Department of Economics, University of Virginia (Processed)

  • Shafizadeh-Moghadam, H., Valavi, R., Shahabi, H., Chapi, K., & Shirzadi, A. (2018). Novel forecasting approaches using combination of machine learning and statistical models for flood susceptibility mapping. Journal of Environmental Management, 217, 1–11. https://doi.org/10.1016/j.jenvman.2018.03.089

    Article  Google Scholar 

  • Shekhar, S., & Pandey, A. C. (2015). Delineation of groundwater potential zone in hard rock terrain of India using remote sensing, geographical information system (GIS) and analytic hierarchy process (AHP) techniques. Geocarto International, 30(4), 402–421. https://doi.org/10.1080/10106049.2014.894584

    Article  Google Scholar 

  • Shiferaw, B., Reddy, V. R., & Wani, S. P. (2008). Watershed externalities, shifting cropping patterns and groundwater depletion in Indian semi-arid villages: The effect of alternative water pricing policies. Ecological Economics, 67(2), 327–340. https://doi.org/10.1016/j.ecolecon.2008.05.011

    Article  Google Scholar 

  • Singh, R. B. (2000). Environmental consequences of agricultural development: A case study from the Green Revolution state of Haryana, India. Agriculture, Ecosystems & Environment, 82(1–3), 97–103. https://doi.org/10.1016/S0167-8809(00)00219-X

    Article  Google Scholar 

  • Singha, S., Das, P., & Singha, S. S. (2021). A fuzzy geospatial approach for delineation of groundwater potential zones in Raipur district, India. Groundwater for Sustainable Development, 12, 100529. https://doi.org/10.1016/j.gsd.2020.100529

    Article  Google Scholar 

  • Solomon, S., & Quiel, F. (2006). Groundwater study using remote sensing and geographic information systems (GIS) in the central highlands of Eritrea. Hydrogeology Journal, 14(6), 1029–1041. https://doi.org/10.1007/s10040-005-0477-y

    Article  CAS  Google Scholar 

  • Souissi, D., Zouhri, L., Hammami, S., Msaddek, M. H., Zghibi, A., & Dlala, M. (2020). GIS-based MCDM–AHP modeling for flood susceptibility mapping of arid areas, southeastern Tunisia. Geocarto International, 35(9), 991–1017. https://doi.org/10.1080/10106049.2019.1566405

    Article  Google Scholar 

  • Srinivas, G. S., Kumar, G. P., & Jyothi, P. (2021). Demarcation of groundwater potential zones using analytical hierarchical process in Cheyyeru watershed, India. International Journal of Energy and Water Resources. https://doi.org/10.1007/s42108-021-00127-3

    Article  Google Scholar 

  • Swain, A. K. (2015). Delineation of groundwater potential zones in Coimbatore district, Tamil Nadu, using Remote sensing and GIS techniques. International Journal of Engineering Research and General Science, 3(6), 203–214.

    Google Scholar 

  • Swain, K. C., Singha, C., & Nayak, L. (2020). Flood susceptibility mapping through the GIS-AHP technique using the cloud. ISPRS International Journal of Geo-Information, 9(12), 720. https://doi.org/10.3390/ijgi9120720

    Article  Google Scholar 

  • Tiwari, R. N., & Kushwaha, V. K. (2020). An Integrated Study to Delineate the Groundwater Potential Zones Using Geospatial Approach of Sidhi Area, Madhya Pradesh. Journal of the Geological Society of India, 95, 520–526.

    Article  Google Scholar 

  • Tolche, A. D. (2021). Groundwater potential mapping using geospatial techniques: A case study of Dhungeta-Ramis sub-basin, Ethiopia. Geology, Ecology, and Landscapes, 5(1), 65–80. https://doi.org/10.1080/24749508.2020.1728882

    Article  Google Scholar 

  • UNESCO. (2015). The United Nations World Water Development Report 2015: Water for a Sustainable World. UNESCO Publishing.

    Google Scholar 

  • Van Steenbergen, F. (2006). Promoting local management in groundwater. Hydrogeology Journal, 14(3), 380–391. https://doi.org/10.1007/s10040-005-0015-y

    Article  Google Scholar 

  • Vargas, L. G. (1990). An overview of the analytic hierarchy process and its applications. European Journal of Operational Research, 48(1), 2–8. https://doi.org/10.1016/0377-2217(90)90056-H

    Article  Google Scholar 

  • Wang, H., Gao, J. E., Zhang, M. J., Li, X. H., Zhang, S. L., & Jia, L. Z. (2015). Effects of rainfall intensity on groundwater recharge based on simulated rainfall experiments and a groundwater flow model. CATENA, 127, 80–91. https://doi.org/10.1016/j.catena.2014.12.014

    Article  Google Scholar 

  • World Bank. (2012). India Groundwater: a Valuable but Diminishing Resource [WWW Document]. https://www.worldbank.org/en/news/feature/2012/03/06/indiagroundwater-critical-diminishing. Accessed 16 Nov 2019.

  • Ying, X., Zeng, G. M., Chen, G. Q., Tang, L., Wang, K. L., & Huang, D. Y. (2007). Combining AHP with GIS in synthetic evaluation of eco-environment quality—A case study of Hunan Province, China. Ecological Modelling, 209(2–4), 97–109. https://doi.org/10.1016/j.ecolmodel.2007.06.007

    Article  Google Scholar 

Download references

Acknowledgements

The authors express gratitude to the Department of Geography and Applied Geography, University of North Bengal, for contributing the essential resources in the present study. The researchers are also thankful to the Geological Survey of India (GSI), Central Ground Water Board (CGWB), Food and Agriculture Organization (FAO), United States Geological Survey (USGS), and India Meteorological Department (IMD). Thanks to A.H. Hassani (Editor-in-Chief) and reviewers for their valuable inputs, which were useful to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mitra.

Ethics declarations

Conflict of interest

There are no competing interests declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, R., Roy, D. Delineation of groundwater potential zones through the integration of remote sensing, geographic information system, and multi-criteria decision-making technique in the sub-Himalayan foothills region, India. Int J Energ Water Res 7, 581–601 (2023). https://doi.org/10.1007/s42108-022-00181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42108-022-00181-5

Keywords

Navigation