Skip to main content
Log in

Efficient removal of manganese from aquatic solutions by amphistegina filter

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

Mono-media filtration vessels of amphistegina and conventional granular activated carbon filters in an assembled semi-pilot filtration unit had been carried out to represent the efficient removal of manganese ions from hydrous solution in a comparison study. Amphistegina tests surfaces have been characterized for the first time in compared to conventional granular activated carbon media by X-ray diffraction, Fourier Transform Infrared spectroscopy and Brunauer–Emmett–Teller surface area analysis. Also, the surface morphology of granular activated carbon and amphistegina media with manganese chloride adsorption was observed by Atomic Force Microscopy analysis. The filtration unit had been operated at different working conditions such as; flow rates (20, 30, 40, 50 and 60 l/min), operating temperatures (293, 303 and 313 k), initial manganese(II) concentrations (15–105 mg/l), constant pH (7.5) and calculated adsorbent mass for granular activated carbon (34.1 g/l) and amphistegina media (115 g/l). The maximum adsorption capacities of manganese ions by amphistegina (1.17 mg/g) and granular activated carbon (3.36 mg/g) filters had been produced at a temperature of 313 k and at a higher flow rate (60 l/min); while at a lower flow rate (20 l/min), the maximum adsorption capacities were 2.83 mg/g for granular activated carbon filter and 3.42 mg/g for amphistegina filter. The adsorption performance was verified by Freundlich and Langmuir adsorption isotherms.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Al-Malack, M. H., & Basaleh, A. A. (2016). Adsorption of heavy metals using activated carbon produced from municipal organic solid waste. Desalination Water Treat, 57(51), 24519–24531.

    Article  CAS  Google Scholar 

  • Aly, A. M., Kamel, M. M., Hamdy, A., Zakaria, K., & Abbas, M. A. (2012). Reverse osmosis pretreatment: removal of iron in groundwater desalination plant in Shupramant-Giza-A case study. Current World Environm, 7, 23–32.

    Article  CAS  Google Scholar 

  • Bakr, A. A., & El-Salamony, R. A. (2018). Iron removal from aqueous solutions by amphistegina filter. Energy Sources, 40(11), 1305–1314.

    Article  CAS  Google Scholar 

  • Bakr, A. A., & Makled, W. A. (2015). New pretreatment media filtration for SWRO membranes of desalination plants. Desalination Water Treat, 55, 718–730.

    Article  CAS  Google Scholar 

  • Bakr, A. A., Mostafa, M. S., & Sultan, E. A. (2016). Mn(II) removal from aqueous solutions by Co/Mo-LDH: kinetics and thermodynamics. Egyptian J Petroleum, 25, 171–181.

    Article  Google Scholar 

  • Bakr, A. A., Mostafa, M. S., Eshaq, Gh, & Kamel, M. M. (2015). Kinetics of uptake of Fe(II) from aqueous solutions by Co/Mo layered double hydroxide (Part 2). Desalination Water Treat, 56, 248–255.

    Article  CAS  Google Scholar 

  • Barroso-Bogeat, A., Alexandre-Franco, M., Fernández-González, C., & Gómez-Serrano, V. (2019). Activated carbon surface chemistry: Changes upon impregnation with Al(III), Fe(III) and Zn(II)- metaloxide catalyst precursors from NO3 aqueous solutions. Arabian J Chem, 12(8), 3963–3976.

    Article  CAS  Google Scholar 

  • Bin Jusoh, A., Cheng WH, Low WM, Nora’aini A., Megat Mohd Noor MJ (2005) Study on the removal of iron and manganese in groundwater by granular activated carbon. Desalination 182, 347–353

  • Bruckman, V. J., & Wriessnig, K. (2013). Improved soil carbonate determination by FT-IR and X-ray analysis. Environm Chem Lett, 11, 65–70.

    Article  CAS  Google Scholar 

  • Cuhadaroglu, D., & Uygun, O. A. (2008). Production and characterization of activated carbon from a bituminous coal by chemical activation. African J Biotechnol, 7, 3703–3710.

    CAS  Google Scholar 

  • Danková, Z., Bekényiová, A., Štyriaková, I., & Fedorová, E. (2015). Study of Cu(II) adsorption by siderite and kaolin. Procedia Earth Planetary Sci, 15, 821–826.

    Article  Google Scholar 

  • Dhilleswararao, V., Subbarao, M. V., & Muralikrishna, M. P. S. (2019). Removal of manganese(II) from aqueous solution by chemically activated thuja occidentalis leaves carbon (CATLC) as an adsorbent: adsorption equilibrium and kinetic studies. Physical Chem Res, 7(1), 11–26.

    CAS  Google Scholar 

  • El-Salamony, R. A., Amdeha, E., Badawy, N. A., Ghoneim, S. A., & Al-Sabagh, A. M. (2018). Visible light sensitive activated carbon-metal oxide (TiO2, WO3, NiO, and SnO) nano-catalysts for photo-degradation of methylene blue: a comparative study. Toxicol Environ Chem, 100(2), 143–156.

    Article  CAS  Google Scholar 

  • El-Salamony, R. A., et al. (2017). Titania modified activated carbon prepared from sugarcane bagasse: adsorption and photocatalytic degradation of methylene blue under visible light irradiation. Environm Technol, 38(24), 3122–3136.

    Article  CAS  Google Scholar 

  • Hartono, T., Wang, S., Ma, Q., & Zhu, Z. (2009). Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution. J Colloid Interface Sci, 333, 114–119.

    Article  CAS  Google Scholar 

  • Karthikeyan, S., Gupta, V. K., Boopathy, R., Titus, A., & Sekaran, G. (2012). A new approach for the degradation of high concentration of aromatic amine by heterocatalytic Fenton oxidation: Kinetic and spectroscopic studies. Jf Molecular Liquids, 173, 153–163.

    Article  CAS  Google Scholar 

  • Legrouri, A., Lakraimi, M., Barroug, A., Roy, A. D., & Besse, J. P. (2005). Removal of the herbicide 2,4-dichlorophenoxyacetate from water to zinc–aluminum-chloride layered double hydroxides. Water Res, 39, 3441–3448.

    Article  CAS  Google Scholar 

  • Liu, Y., & Liu, Y.-J. (2008). Biosorption isotherms, kinetics and thermodynamics. Separ Purific Technol, 61, 229–242.

    Article  CAS  Google Scholar 

  • Mostafa, M. S., Bakr, A. A., ElNaggar, A. M. A., & Sultan, E. A. (2016). Water decontamination via the removal of Pb(II) using a new generation of highly energetic surface nano-material: Co+2 Mo+6 LDH. J Colloid Interface Sci, 461, 261–272.

    Article  CAS  Google Scholar 

  • Okoniewska, E., Lach, J., Kacprzak, M., & Neczaj, E. (2007). The removal of manganese, iron and ammonium nitrogen on impregnated activated carbon. Desalination, 206, 251–258.

    Article  CAS  Google Scholar 

  • Rachel, N. Y., et al. (2015). Adsorption of manganese(II) ions from aqueous solutions onto granular activated carbon (GAC) and modified activated carbon (MAC). Int J Innov Sci Eng Technol, 2(8), 606–614.

    Google Scholar 

  • Reddad, Z., Gerente, C., Andres, Y., & Le Cloirec, P. L. (2002). Adsorption of several metal ions onto a low-cost biosorbent: Kinetic and equilibrium studies. Environm Sci Technol, 36, 2067–2073.

    Article  CAS  Google Scholar 

  • Rodríguez Chanfrau, J. E., Martínez Álvarez, M. L., & Bermello Crespo, L. A. (2014). Evaluation of calcium and magnesium citrate from Cuban dolomite. Revista Cubana de Farmacia, 48(4), 636–645.

    Google Scholar 

  • Roopa, D. (2016). Preparation of activated carbon from bitter orange peel (Citrus Aurantium) and preliminary studies on its characteristics. Int J Scient Eng Res, 7(4), 40–44.

    Google Scholar 

  • Sharma, S. K., Kappelhof, J., Groenendijk, M., & Schippers, J. C. (2001). Comparison of physicochemical iron removal mechanisms in filters. J Water Supply Res Technol Aqua, 50(4), 187–198.

    Article  CAS  Google Scholar 

  • Tang, Y.-B., Liu, Q., & Chen, F.-Y. (2012). Preparation and characterization of activated carbon from waste ramulus mori. Chem Eng J, 203, 19–24.

    Article  CAS  Google Scholar 

  • Tekerlekopoulou, A. G., & Vayenas, D. V. (2007). Ammonia, iron and manganese removal from potable water using trickling filters. Desalination, 210, 225–235.

    Article  CAS  Google Scholar 

  • Zohreh, D., & Abedi, F. (2019). Efficacy of impregnated active carbon in manganese removal from aqueous solutions. J Adv Environ Health Res, 7, 113–121.

    Google Scholar 

  • Zue Mve, M., Makani, T., & Eba, F. (2016). Removal of Mn(II) from aqueous solutions by activated carbons prepared from Coula edulis nut shell. J Environ Sci Technol, 9(2), 226–237.

    Article  Google Scholar 

Download references

Acknowledgements

The acknowledgment of this work should be awarded to Assistant Professor Dr. Walid Makled, Department of Exploration, Egyptian Petroleum Research Institute (EPRI), for his assistance and improvement of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bakr.

Ethics declarations

Conflict of interest

All authors of this paper have no conflict of interest with one or organization.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakr, A.A., El-Salamony, R.A., Rabie, A.M. et al. Efficient removal of manganese from aquatic solutions by amphistegina filter. Int J Energ Water Res 4, 281–291 (2020). https://doi.org/10.1007/s42108-020-00077-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42108-020-00077-2

Keywords

Navigation