Skip to main content

Advertisement

Log in

Bio-electrochemical treatment of food wastewater and copper recovery from copper-contaminated plant with electricity production using biomaterial anode

  • Original Article
  • Published:
International Journal of Energy and Water Resources Aims and scope Submit manuscript

Abstract

A lab-based H-type microbial fuel cell (MFC) was developed for the recovery of copper (Cu) accumulated in harvested biomass ash leachate with simultaneous electricity generation and treatment of real food wastewater from cocoa processing (C1), cassava processing (C2) and bakery (C3) at low and high ionic strengths using activated wood (AW) char and activated bamboo (AB) char as anodes. The optimum Cu concentration of 85.37% and 82.14% was recovered for C1 and C3, respectively, with high ionic intensity. The least Cu (23.15%) was recorded for C2 with low ionic strength. The maximum chemical oxygen demand (COD) removal of 79.3% was obtained for C1 with high conductivity in MFCs, whereas C2 with low conductivity gave the lowest COD removal of 47.5%. Maximum power density of 249.88 mW/m2 was attained in C1 at high ionic strength and 65.70 mW/m2 is achieved C2 with low ionic strength. AW char is a cost-effective and sustainable anode material alternative to carbon and graphite-based electrode in MFC. Findings from this study suggested MFC as a feasible low-cost and ecofriendly technology for copper recovery to limit the toxicity effects associated with disposal of harvested copper phyto-accumulated biomass with simultaneous treatment of real wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbas, S. Z., Rafatullah, M., Khan, M. A., & Siddiqui, M. R. (2019). Bioremediation and electricity generation by using open and closed sediment microbial fuel cells. Frontiers in Microbiology, 9(3348), 1–12. https://doi.org/10.3389/fmicb.2018.03348.

    Article  CAS  Google Scholar 

  • Ahn, Y., Im, S., & Chung, J. W. (2017). Optimizing the operating temperature for microbial electrolysis cell treating sewage sludge. International Journal of Hydrogen Energy, 42, 27784–27791.

    Article  CAS  Google Scholar 

  • An, Z., Zhang, H., Wen, Q., Chen, Z., & Du, M. (2014). Desalination combined with copper (II) removal in a novel microbial desalination cell. DES, 346, 115–121.

    Article  CAS  Google Scholar 

  • Andreazza, R., Bortolon, L., Pieniz, S., Camargo, F., & Solange, O. B. E. (2013). Copper phytoextraction and phytostabilization by brachiaria decumbens stapf. in vineyard soils and a copper mining waste. Open Journal of Soil Science, 3, 273–282.

    Article  CAS  Google Scholar 

  • Asztalos, J. R., & Kim, Y. (2015). Enhanced digestion of waste activated sludge using microbial electrolysis cells at ambient temperature. Water Research, 87, 503–512.

    Article  CAS  Google Scholar 

  • Bajracharya, S., Srikanth, S., Mohanakrishna, G., Zacharia, R., Strik, D. P. B. T. B., & Pant, D. (2017). Biotransformation of carbon dioxide in bioelectrochemical systems: State of the art and future prospects. Journal of Power Sources, 356, 256–273.

    Article  CAS  Google Scholar 

  • Capodaglio, A., Cecconet, D., & Molognoni, D. (2017). An integrated mathematical model of microbial fuel cell processes: bioelectrochemical and microbiologic aspects. Processes, 5(4), 73. https://doi.org/10.3390/pr5040073.

    Article  CAS  Google Scholar 

  • Chai, L. F., Chai, L. C., Suhaimi, N., & Son, R. (2010). Performance of air-cathode microbial fuel cell with wood charcoal as electrodes. International Food Research Journal, 17(2), 485–490.

    CAS  Google Scholar 

  • Chen, S. L., Patil, S. A., & Schroder, U. A. (2018). high-performance rotating graphite fiber brush air-cathode for microbial fuel cells. Applied Energy, 211, 1089–1094.

    Article  CAS  Google Scholar 

  • Chouler, J., Padgett, G. A., Cameron, P. J., Preuss, K., Titirici, M. M., Ieropoulos, I., et al. (2016). Towards effective small scale microbial fuel cells for energy generation from urine. Electrochimica Acta, 192, 89–98. https://doi.org/10.1016/j.electacta.2016.01.112.

    Article  CAS  Google Scholar 

  • Cotterill, S. E., Dolfing, J., Jones, C., Curtis, T. P., & Heidrich, E. S. (2017). Low temperature domestic wastewater treatment in a microbial electrolysis cell with 1 m(2) anodes: Towards system scale-up. Fuel Cells, 17, 584–592.

    Article  CAS  Google Scholar 

  • Dumitru, A., & Scott, K. (2016). Anode materials for microbial fuel cells. In K. Scott & E. H. Yu (Eds.), Microbial electrochemical and fuel cells. Fundamentals and applications (pp. 10–11). Cambridge: Woodhead Publishing.

    Google Scholar 

  • Ezziat, L., Elabed, A., Ibnsouda, S., & El Abed, S. (2019). Challenges of microbial fuel cell architecture on heavy metal recovery and removal from wastewater. Frontiers in Energy Research, 7(1), 1–13. https://doi.org/10.3389/fenrg.2019.00001.

    Article  Google Scholar 

  • Fedje, K., Modin, O., & Strömvall, A.-M. (2015). Copper recovery from polluted soils using acidic washing and bioelectrochemical systems. Metals (Basel), 5(3), 1328–1348.

    Article  CAS  Google Scholar 

  • Gajda, I., Greenman, J., & Ieropoulos, I. A. (2018). Recent advancements in real-world microbial fuel cell applications. Cur. Opin. in Electrochem., 11, 78–83. https://doi.org/10.1016/j.coelec.2018.09.006.

    Article  CAS  Google Scholar 

  • Ghosh, M., & Singh, S. P. (2005). A Review on Phytoremediation of Heavy Metals and Utilization of It’s by Products. Asian Journal on Energy and Environment, 6(604), 214–231.

    Google Scholar 

  • Hassan, M., Wei, H. W., Qiu, H. J., Su, Y. L., Jaafry, S. W. H., Zhan, L., et al. (2018). Power generation and pollutants removal from landfill leachate in microbial fuel cell: Variation and influence of anodic microbiomes. Bioresource Technology, 247, 434–442.

    Article  CAS  Google Scholar 

  • Heidrich, E. S., Dolfing, J., Wade, M., Sloan, W. T., Quince, C., & Curtis, T. P. (2018). Temperature, inocula and substrate: Contrasting electroactive consortia, diversity and performance in microbial fuel cells. Bioelectrochemistry, 119, 43–50.

    Article  CAS  Google Scholar 

  • Heijne, A. T., Liu, F., van der Weijden, R., Weijma, J., Buisman, C. J. N., & Hamelers, H. V. M. (2006). Copper recovery combined with electricity production in a microbial fuel cell. Environmental Science and Technology, 44(11), 4376–4381.

    Article  CAS  Google Scholar 

  • Huggins, T. M., Latorre, A., Biffinger, J. C., & Ren, Z. J. (2016). Biochar based microbial fuel cell for enhanced wastewater treatment and nutrient recovery. Sustainability, 8(2), 1–10.

    Article  CAS  Google Scholar 

  • Isosaari, P., & Sillanpää, M. (2017). Use of sulfate-reducing and bioelectrochemical reactors for metal recovery from mine water. Separation & Purification Reviews, 46, 1–20. https://doi.org/10.1080/15422119.2016.1156548.

    Article  CAS  Google Scholar 

  • Ivars-Barceló, F., Zuliani, A., Fallah, M., Mashkour, M., Rahimnejad, M., & Luque, R. (2018). Novel applications of microbial fuel cells in sensors and biosensors. Applied Sciences, 8(1184), 1–16. https://doi.org/10.3390/app8071184.

    Article  CAS  Google Scholar 

  • Janicek, A., Gao, N., Fan, Y., & Liu, H. (2015). High performance activated carbon/carbon cloth cathodes for microbial fuel cells. Fuel Cells, 15(6), 855–861.

    Article  CAS  Google Scholar 

  • Jannelli, N., Nastro, R. A., Cigolotti, V., Minutillo, M., & Falcucci, G. (2017). Low pH, high salinity: Too much for microbial fuel cells. Applied Energy, 192, 543–550.

    Article  CAS  Google Scholar 

  • Jia, Q. B., Wei, L. L., Han, H. L., & Shen, J. Q. (2014). Factors that influence the performance of two-chamber microbial fuel cell. International Journal of Hydrogen Energy, 39, 13687–13693.

    Article  CAS  Google Scholar 

  • Jiang, D., & Li, B. (2009). Granular activated carbon single-chamber microbial fuel cells (GAC-SCMFCs): A design suitable for large-scale wastewater treatment processes. Biochemical Engineering Journal, 47, 31–37.

    Article  CAS  Google Scholar 

  • Kim, J. R., Jung, S. H., Regan, J. M., & Logan, B. E. (2007). Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresource Technology, 98, 2568–2577.

    Article  CAS  Google Scholar 

  • Li, S., & Chen, G. (2018). Factors affecting the effectiveness of bioelectrochemical system applications: Data synthesis and meta-analysis. Batteries, 4(34), 1–18. https://doi.org/10.3390/batteries4030034.

    Article  CAS  Google Scholar 

  • Li, Z., Zhang, X., & Lei, L. (2008). Electricity production during the treatment of real electroplating wastewater containing Cr6+ using microbial fuel cell. Process Biochemistry, 43(12), 1352–1358.

    Article  CAS  Google Scholar 

  • Logan, B. E., Aelterman, P., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., et al. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40(17), 5181–5192.

    Article  CAS  Google Scholar 

  • Lu, N., Gui Zhou, S., Zhuang, L., Tao Zhang, J., & Ren Ni, J. (2009). Electricity generation from starch processing wastewater using microbial fuel cell technology. Biochemical Engineering Journal, 43(3), 246–251.

    Article  CAS  Google Scholar 

  • Min, B., & Angelidaki, I. (2008). Innovative microbial fuel cell for electricity production from anaerobic reactors. Journal of Power Sources, 180, 641–647.

    Article  CAS  Google Scholar 

  • Mokhtar, H., Morad, N., & Fizri, F. F. A. (2011). Phytoaccumulation of copper from aqueous solutions using eichhornia crassipes and centella asiatica. International Journal of Environmental Science and Development, 2(3), 205–210.

    Article  Google Scholar 

  • Nam, T., Son, S., Koo, B., Tran, H. V. H., Kim, J. R., Choi, Y., et al. (2017). Comparative evaluation of performance and electrochemistry of microbial fuel cells with different anode structures and materials. International Journal of Hydrogen Energy, 42, 27677–27684.

    Article  CAS  Google Scholar 

  • Olu-Owolabi, B. I., Agunbiade, F. O., Fagbayigbo, B. O., & Adebowale, K. O. (2013). Monitoring copper bioaccumulation in cocoa from copper-based pesticide-treated cocoa farms using fuzzy similarity method. Bioremediation Journal, 17(3), 131–147.

    Article  CAS  Google Scholar 

  • Pandey, P., Shinde, V. N., Deopurkar, R. L., Kale, S. P., Patil, S. A., & Pant, D. (2016). Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Applied Energy, 168, 706–723.

    Article  CAS  Google Scholar 

  • Patil, S. A., Harnisch, F., Kapadnis, B., & Schröder, U. (2010). Electroactive mixed culture biofilms in microbial bioelectrochemical systems: the role of temperature for biofilm formation and performance. Biosensors and Bioelectronics, 26(2), 803–808.

    Article  CAS  Google Scholar 

  • Rodenas Motos, P., ter Heijne, A., van der Weijden, R., Saakes, M., Buisman, C. J. N., & Sleutels, T. H. J. A. (2015). High rate copper and energy recovery in microbial fuel cells. Frontiers in Microbiology, 6(527), 1–8. https://doi.org/10.3389/fmicb.2015.00527.

    Article  Google Scholar 

  • Sahoo, P., Tripathy, S., Panigrahi, M., & Equeenuddin, S. M. (2017). Anthropogenic contamination and risk assessment of heavy metals in stream sediments influenced by acid mine drainage from a northeast coalfield, India. Bulletin of Engineering Geology and the Environment, 76, 537–552. https://doi.org/10.1007/s10064-016-0975-2.

    Article  CAS  Google Scholar 

  • Santoro, C., Arbizzani, C., Erable, B., & Ieropoulos, I. (2017). Microbial fuel cells: From fundamentals to applications. A review. Journal of Power Sources, 356, 225–244.

    Article  CAS  Google Scholar 

  • Mathuriya, A. S., & Sharma, V. N. (2010). Treatment of brewery wastewater and production of electricity through microbial fuel cell technology. International Journal of Biotechnology and Biochemistry, 6(1), 973–2691.

    Google Scholar 

  • Sonawane, J. M., Patil, S. A., Ghosh, P. C., & Adeloju, S. B. (2018). Low-cost stainless-steel wool anodes modified with polyaniline and polypyrrole for high-performance microbial fuel cells. Journal of Power Sources, 379, 103–114. https://doi.org/10.1016/J.JPOWSOUR.2018.01.001.

    Article  CAS  Google Scholar 

  • Strik, D. P. B. T. B., Picot, M., Buisman, C. J. N., & Barriere, F. (2013). pH and temperature determine performance of oxygen reducing biocathodes. Electroanaly, 25, 652–655.

    Article  CAS  Google Scholar 

  • Su, C., Jiang, L., & Zhang, W. (2014). A review on heavy metal contamination in the soil worldwide: Situation, impact and remediation techniques. Environmental Skeptics and Critics, 3(2), 24–38.

    Google Scholar 

  • Tao, H., Zhang, L., Gao, Z., & Wu, W. (2011a). Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor. Bioresource Technology, 102(22), 10334–10339.

    Article  CAS  Google Scholar 

  • Tao, H. C., Zhang, L. J., Gao, Z. Y., & Wu, W. M. (2011b). Copper reduction in a pilot-scale membrane-free bioelectrochemical reactor. Bioresource Technology, 102(22), 10334–10339.

    Article  CAS  Google Scholar 

  • Ucar, D., Zhang, Y., & Angelidaki, I. (2017). An overview of electron acceptors in microbial fuel cells. Frontiers in Microbiology, 8, 643. https://doi.org/10.3389/fmicb.2017.00643.

    Article  Google Scholar 

  • United State Environmental Protection Agency (1978). Method 410.3: Chemical Oxygen Demand (Titrimetric, High Levelfor Saline Waters) by Titration.

  • Venkata, M. S., Lalit, B. V., & Sarma, P. (2008). Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresource Technology, 99, 59–67.

    Article  CAS  Google Scholar 

  • Wang, X., Li, J., Wang, Z., Tursun, H., Liu, R., Gao, Y., et al. (2016). Increasing the recovery of heavy metal ions using two microbial fuel cells operating in parallel with no power output. Environmental Science and Pollution Research, 23, 20368–20377. https://doi.org/10.1007/s11356-016-7045-y.

    Article  CAS  Google Scholar 

  • Wang, Z., Lim, B., & Choi, C. (2011). Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresource Technology, 102(10), 6304–6307.

    Article  CAS  Google Scholar 

  • Wang, Z., Lim, B.-S., Lu, H., Fan, J., & Choi, C.-S. (2010). Cathodic reduction of Cu2+. Bulletin of the Korean Chemical Society, 31(7), 2025–2030.

    Article  CAS  Google Scholar 

  • Wang, H., & Ren, Z. J. (2014). Bioelectrochemical metal recovery from wastewater: A review. Water Research, 66, 219–232.

    Article  CAS  Google Scholar 

  • Wen, Q., Wu, Y., Cao, D., Zhao, L., & Sun, Q. (2009). Electricity generation and modeling of microbial fuel cell from continuous beer brewery wastewater. Bioresource Technology, 100(18), 4171–4175.

    Article  CAS  Google Scholar 

  • Xie, X., Criddle, C., & Cui, Y. (2015). Design and fabrication of bioelectrodes for microbial bioelectrochemical systems. Energy & Environmental Science, 8(12), 3418–3441.

    Article  CAS  Google Scholar 

  • Yang, S., Jia, B., & Liu, H. (2009). Effects of the Pt loading side and cathode-biofilm on the performance of a membrane-less and single-chamber microbial fuel cell. Bioresource Technology, 100, 1197–1202.

    Article  CAS  Google Scholar 

  • Yang, H. J., Zhou, M. H., Liu, M. M., Yang, W. L., & Gu, T. Y. (2015). Microbial fuel cells for biosensor applications. Biotechnology Letters, 37, 2357–2364.

    Article  CAS  Google Scholar 

  • Zhang, F., Ge, Z., Grimaud, J., Hurst, J., & He, Z. (2013). Long-term performance of liter-scale microbial fuel cells treating primary effluent installed in a municipal wastewater treatment facility. Environmental Science and Technology, 47, 4941–4948.

    Article  CAS  Google Scholar 

  • Zhen, G. Y., Lu, X. Q., Kumar, G., Bakonyi, P., Xu, K. Q., & Zhao, Y. C. (2017). Microbial electrolysis cell platform for simultaneous waste biorefinery and clean electrofuels generation: Current, situation, challenges and future perspectives. Progress in Energy and Combustion Science, 63, 119–145.

    Article  Google Scholar 

  • Zhou, M., Chi, M., Luo, J., He, H., & Jin, T. (2011). An overview of electrode materials in microbial fuel cells. Journal of Power Sources, 196(10), 4427–4435.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank all who assisted in conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Adelaja.

Appendix

Appendix

Copper concentration in the leachate used in each experiment

$${\text{Copper concentration of composite leachate }} = { 741}. 8 {\text{ mg}}/{\text{l}}$$
$${\text{Copper concentration of 300}}{\text{ ml leachate }} = 741.8 \times 300/1000 \, = { 222}. 5 4 {\text{ mg}}/{\text{l}}$$

Using C1V1 = C2V2, the copper concentration in 600 ml solution of catholyte (produced by diluting 300 ml of composite leachate) used in each experiment

= 222.54 × 300/600 mg/l = 111 mg/l

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adelaja, O.A., Ibrahim, M.A., Bello, L.A. et al. Bio-electrochemical treatment of food wastewater and copper recovery from copper-contaminated plant with electricity production using biomaterial anode. Int J Energ Water Res 3, 187–201 (2019). https://doi.org/10.1007/s42108-019-00020-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42108-019-00020-0

Keywords

Navigation