Skip to main content
Log in

Developing ensemble machine learning for estimating and parametrically assessing the moment capacity of ferrocement members

  • Research
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Currently, ferrocement members are being increasingly used in civil engineering projects. However, the literature still lacks investigations on the potential of using machine learning techniques in predicting the properties and behavior of such members. This study fills the gap in the literature by providing a detailed study that investigates the application of ensemble machine learning approaches in estimating and parametrically assessing the moment capacity of ferrocement members. Additionally, a notable contribution of this study is integrating feature importance and partial dependence analysis. These analytical methods allow for a detailed parametric assessment, aiming to understand the influence of each parameter on the moment capacity. As part of the study, several key input parameters are considered through utilizing a comprehensive database derived from tests on ferrocement. These parameters include the width and depth of specimens, cube compressive strength of mortar, and wire mesh’s tensile strength and volume fraction. The ensemble machine learning approach offers potential advantages in terms of accuracy and reliability over traditional methods. This research underscores the importance of advanced predictive tools in civil engineering and their potential to enhance the understanding and prediction of moment capacity in ferrocement members. The findings from this study can serve as a foundation for future research, aiming to further refine and optimize the prediction models for various construction materials and methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Some or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Amin, M. N., Khan, K., Javed, M. F., Aslam, F., Qadir, M. G., & Faraz, M. I. (2022). Prediction of mechanical properties of Fly-Ash/Slag-based geopolymer concrete using ensemble and non-ensemble machine-learning techniques. Materials, 15(10), 3478.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Chen, T., & Guestrin, C. (2016). XGBoost: a scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794).

  • Dabiri, H., Farhangi, V., Moradi, M. J., Zadehmohamad, M., & Karakouzian, M. (2022). Applications of decision tree and random forest as tree-based machine learning techniques for analyzing the ultimate strain of spliced and non-spliced reinforcement bars. Applied Sciences, 12(10), 4851.

    Article  Google Scholar 

  • de-Prado-Gil, J., Palencia, C., Silva-Monteiro, N., & Martínez-García, R. (2022). To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models. Case Studies in Construction Materials, 16, e01046.

    Article  Google Scholar 

  • Erdem, H. (2015). Predicting the moment capacity of RC beams exposed to fire using ANNs. Construction and Building Materials, 101, 30–38.

    Article  Google Scholar 

  • Eskandari, H., & Madadi, A. (2015). Investigation of ferrocement channels using experimental and finite element analysis. Engineering Science and Technology, an International Journal, 18(4), 769–775.

    Article  Google Scholar 

  • Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232.

    Article  MathSciNet  Google Scholar 

  • Gandomi, A. H., Roke, D. A., & Sett, K. (2013). Genetic programming for moment capacity modeling of ferrocement members. Engineering Structures, 57, 169–176.

    Article  Google Scholar 

  • Ghanizadeh, A. R., Amlashi, A. T., & Dessouky, S. (2023). A novel hybrid adaptive boosting approach for evaluating properties of sustainable materials: a case of concrete containing waste foundry sand. Journal of Building Engineering, 72, 106595.

    Article  Google Scholar 

  • Ghunimat, D., Alzoubi, A. E., Alzboon, A., & Hanandeh, S. (2023). Prediction of concrete compressive strength with GGBFS and fly ash using multilayer perceptron algorithm, random forest regression and k-nearest neighbor regression. Asian Journal of Civil Engineering, 24(1), 169–177.

    Article  Google Scholar 

  • Habib, A., & Yildirim, U. (2022). Estimating mechanical and dynamic properties of rubberized concrete using machine learning techniques: a comprehensive study. Engineering Computations, 39(8), 3129–3178.

    Article  Google Scholar 

  • Habib, A., Yildirim, U., & Habib, M. (2023a). Applying kernel principal component analysis for enhanced multivariable regression modeling of rubberized concrete properties. Arabian Journal for Science and Engineering, 48(4), 5383–5396.

    Article  Google Scholar 

  • Habib, M., Bashir, B., Alsalman, A., & Bachir, H. (2023b). Evaluating the accuracy and effectiveness of machine learning methods for rapidly determining the safety factor of road embankments. Multidiscipline Modeling in Materials and Structures, 19(5), 966–983.

    Article  Google Scholar 

  • Ibrahim, H. M. (2011). Shear capacity of ferrocement plates in flexure. Engineering Structures, 33(5), 1680–1686.

    Article  Google Scholar 

  • Ismail, A. (2019). Estimating moment capacity of ferrocement members using self-evolving network. Frontiers of Structural and Civil Engineering, 13, 926–936.

    Article  Google Scholar 

  • Kaish, A. B. M. A., Jamil, M., Raman, S. N., Zain, M. F. M., & Nahar, L. (2018). Ferrocement composites for strengthening of concrete columns: a review. Construction and Building Materials, 160, 326–340.

    Article  Google Scholar 

  • Kalman Sipos, T., & Parsa, P. (2020). Empirical formulation of ferrocement members moment capacity using artificial neural networks. Journal of Soft Computing in Civil Engineering, 4(1), 111–126.

    Google Scholar 

  • Kaveh, A., Dadras, E. A., Javadi, S. M., & Geran, M. N. (2021). Machine learning regression approaches for predicting the ultimate buckling load of variable-stiffness composite cylinders. Acta Mechanica, 232, 921–931.

    Article  Google Scholar 

  • Kaveh, A., Elmieh, R., & Servati, H. (2001). Prediction of moment-rotation characteristic for semi-rigid connections using BP neural networks. Asian Journal of Civil Engineering, 2(2), 131–142.

    Google Scholar 

  • Kaveh, A., Eskandari, A., & Movasat, M. (2023). Buckling resistance prediction of high-strength steel columns using metaheuristic-trained artificial neural networks. Structures, 56, 104853.

    Article  Google Scholar 

  • Khan, K., Ahmad, W., Amin, M. N., Aslam, F., Ahmad, A., & Al-Faiad, M. A. (2022). Comparison of prediction models based on machine learning for the compressive strength estimation of recycled aggregate concrete. Materials, 15(10), 3430.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Li, H., Lin, J., Lei, X., & Wei, T. (2022a). Compressive strength prediction of basalt fiber reinforced concrete via random forest algorithm. Materials Today Communications, 30, 103117.

    Article  Google Scholar 

  • Li, Z., Yoon, J., Zhang, R., Rajabipour, F., Srubar, W. V., III., Dabo, I., & Radlińska, A. (2022). Machine learning in concrete science: applications, challenges, and best practices. NPJ Computational Materials, 8(1), 127.

    Article  ADS  Google Scholar 

  • Ma, L., Zhou, C., Lee, D., & Zhang, J. (2022). Prediction of axial compressive capacity of CFRP-confined concrete-filled steel tubular short columns based on XGBoost algorithm. Engineering Structures, 260, 114239.

    Article  Google Scholar 

  • Mashrei, M. A., Abdulrazzaq, N., Abdalla, T. Y., & Rahman, M. S. (2010). Neural networks model and adaptive neuro-fuzzy inference system for predicting the moment capacity of ferrocement members. Engineering Structures, 32(6), 1723–1734.

    Article  Google Scholar 

  • Minde, P., Bhagat, D., Patil, M., & Kulkarni, M. (2023). A state-of-the-art review of ferrocement as a sustainable construction material in the Indian context. Materials Today: Proceedings.

  • Moein, M. M., Saradar, A., Rahmati, K., Mousavinejad, S. H. G., Bristow, J., Aramali, V., & Karakouzian, M. (2023). Predictive models for concrete properties using machine learning and deep learning approaches: a review. Journal of Building Engineering, 63, 105444.

    Article  Google Scholar 

  • Naaman, A. E., & Hammoud, H. (1992). Ferrocement prefabricated housing: the next generation. Journal of Ferrocement, 22(1), 35–47.

    Google Scholar 

  • Naderpour, H., Eidgahee, D. R., Fakharian, P., Rafiean, A. H., & Kalantari, S. M. (2020). A new proposed approach for moment capacity estimation of ferrocement members using Group method of data handling. Engineering Science and Technology, an International Journal, 23(2), 382–391.

    Article  Google Scholar 

  • Naderpour, H., & Mirrashid, M. (2020). Moment capacity estimation of spirally reinforced concrete columns using ANFIS. Complex & Intelligent Systems, 6, 97–107.

    Article  Google Scholar 

  • Quek, S. T., & On, S. H. (1991). Uncertainty in flexural capacity prediction of ferrocement elements. Journal of Materials in Civil Engineering, 3(4), 263–277.

    Article  Google Scholar 

  • Rofooei, F. R., Kaveh, A., & Masteri, F. F. (2011). Estimating the vulnerability of concrete moment resisting frame structures using artificial neural networks. International Journal of Operational Research, 1(3), 433–448.

    Google Scholar 

  • Saha, S., Mohanty, T., & Saha, P. (2023). An experimental study on behaviour of ferrocement. Materials Today: Proceedings.

  • Sakthivel, P. B., & Jagannathan, A. (2011). Ferrocement construction technology and its applications–A Review.

  • Salami, B. A., Iqbal, M., Abdulraheem, A., Jalal, F. E., Alimi, W., Jamal, A., & Bardhan, A. (2022). Estimating compressive strength of lightweight foamed concrete using neural, genetic and ensemble machine learning approaches. Cement and Concrete Composites, 133, 104721.

    Article  Google Scholar 

  • Singh, G., & Xiong, G. J. (1992). Ultimate moment capacity of ferrocement reinforced with weldmesh. Cement and Concrete Composites, 14(4), 257–267.

    Article  ADS  Google Scholar 

  • Tawab, A. A., Fahmy, E. H., & Shaheen, Y. B. (2012). Use of permanent ferrocement forms for concrete beam construction. Materials and Structures, 45, 1319–1329.

    Article  Google Scholar 

  • Ullah, H. S., Khushnood, R. A., Farooq, F., Ahmad, J., Vatin, N. I., & Ewais, D. Y. Z. (2022). Prediction of compressive strength of sustainable foam concrete using individual and ensemble machine learning approaches. Materials, 15(9), 3166.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Yan, H., He, Z., Gao, C., Xie, M., Sheng, H., & Chen, H. (2022). Investment estimation of prefabricated concrete buildings based on XGBoost machine learning algorithm. Advanced Engineering Informatics, 54, 101789.

    Article  Google Scholar 

  • Yasin, B., Maraqa, F., Al-Sahawneh, E., Al Adwan, J., & Alzubi, Y. (2022). A comparative assessment of regularized regression techniques for modeling the mechanical properties of rubberized concrete. The Open Civil Engineering Journal. https://doi.org/10.2174/18741495-v16-e2208170

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper as follows: study conception and design: J.AA., J. AT, and Y. A.; data collection: J.AA. and J. AT; analysis and interpretation of results: J.AA., J. AT, and Y. A.; manuscript preparation: J.AA., J. AT, and Y. A. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Yazan Alzubi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Adwan, J., Al Thawabteh, J. & Alzubi, Y. Developing ensemble machine learning for estimating and parametrically assessing the moment capacity of ferrocement members. Asian J Civ Eng (2024). https://doi.org/10.1007/s42107-024-01012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42107-024-01012-0

Keywords

Navigation