Skip to main content
Log in

Numerical study of concentrically braced frames with the replaceable reduced section under cyclic loading

  • Research
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Concentrically braced frames are common systems used for lateral loads of structures. These systems have low displacement and high stiffness. Therefore, many studies have been done to improve the behavior of these systems in recent years. Some research has aimed to increase the ductility and energy absorption of the concentrically braced frames. Since bucking of these systems in compression prevents using their maximum capacity, this research aims to improve the cyclic behavior, ductility, and energy absorption of the mentioned systems using the reduced section. In this paper, the reduced section has been created by installing a smaller profile, compared to the main brace, to act as an energy dissipation element for the bracing system and make the reduced section replaceable. The reduced section yields before the main brace buckles. As a result, the main concentrically braced frame prevented from buckling. In this paper, three finite element models have been analyzed numerically. Then, the reduced section (fuse) was reinforced to improve the strength and stability of the fuse and brace system. The results showed that in the proposed models, ductility increased by 57% and 59% in tension and compression, respectively, energy absorption increased by 14%, and a stable hysteresis curve was illustrated. Using the reduced section has increased ductility, energy absorption, and hysteresis behavior in the brace system. Moreover, reinforcing the reduced section has improved the cyclic behavior and strength of the bracing system significantly, and a stable hysteresis behavior was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Material properties, numerical modeling, and analysis were conducted by Amin Ramezantitkanloo. Amin Ramezantitkanloo wrote the main manuscript text. Mohammad Ali Kafi and Ali Kachooee commented on the first version of this paper. Finally, all authors read and approved the final version of the paper.

Corresponding author

Correspondence to Mohammad Ali Kafi.

Ethics declarations

Conflict of interest

On behalf of all authors, Mohammad Ali Kafi states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezantitkanloo, A., Kafi, M.A. & Kachooee, A. Numerical study of concentrically braced frames with the replaceable reduced section under cyclic loading. Asian J Civ Eng 25, 461–476 (2024). https://doi.org/10.1007/s42107-023-00788-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-023-00788-x

Keywords

Navigation