Skip to main content
Log in

CrackSpot: deep learning for automated detection of structural cracks in concrete infrastructure

  • Methodology
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

To maintain structural integrity and avoid structural failures that could harm neighboring infrastructure, pollute the environment, and even result in fatalities, routine inspection and repair of concrete infrastructure are required. Throughout the structure’s operational life, routine visual inspections are typically undertaken to detect various problems caused by environmental exposure (such as cracks, loss of material, rusting of metal bindings, etc.). Visual examination can yield a variety of data that may enable the cause of distress to be positively identified. Its effectiveness is subject to human error and depends on the investigator’s skill and experience and because of their size and difficult-to-reach features, huge structures like dams, bridges, and tall skyscrapers can be prohibitively dangerous. The approach presented here uses deep learning techniques to identify the structural cracks on concrete surfaces to achieve easy detection of the cracks and high accuracy. Here, we propose an integrated Tensrflow CNN and image processing-based crack-finding method to detect cracks with high precision. Thousands of photos of cracked and non-cracked structure surface datasets are considered while developing the model. Image features are extracted during pre-processing to increase training effectiveness. The developed model has a 97.11% accuracy rate and an F1-score of 97%. The results show that the designed model is highly precise and effective in identifying cracks in structures and more accurate than many implemented techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article.

References

Download references

Funding

Open access funding provided by HEAL-Link Greece. This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

All the three authors significantly contributed to all stages of the manuscript.

Corresponding author

Correspondence to R. Shashidhar.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shashidhar, R., Manjunath, D. & Shanmukha, S.M. CrackSpot: deep learning for automated detection of structural cracks in concrete infrastructure. Asian J Civ Eng 25, 1079–1090 (2024). https://doi.org/10.1007/s42107-023-00754-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-023-00754-7

Keywords

Navigation