Skip to main content

Advertisement

Log in

Evaluation of the moment–rotation curve of steel beam-to-column joints with flange-plate

  • Original Paper
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Beam-to-column connections and their behavior in structures due to its importance in seismic loads are one of the most important parts of steel frames analysis. Thus, the correct understanding of power transmission by beam-to-column connections and more accurate understanding of their behavior are essential for modeling and analysis of steel structures. The common method for determining moment–rotation curve is connection test. In this study, after determining the behavioral curve of laboratory sample of steel beam-to-column connection with the flange plates, the behavior of this sample connection was determined by component-based method, finite element analysis and neural network. In order to assess the accuracy of these methods, moment–rotation curve obtained are validated and compared by the laboratory sample results. The results show that moment–rotation curve of the laboratory sample and analytical methods are close together at an acceptable level and can be used to study the behavior of this type of connection with reasonable accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abdollahzadeh, G., Shabanian, S. M., & Tavakol, A. (2019). Experimental and numerical evaluation of rigid column to baseplate connection under cyclic loading. The Structural Design of Tall and Special Buildings,28(6), e1596.

    Article  Google Scholar 

  • Abdollahzadeh, G., Gharavi, S. Y., & Beigy, M. H. (2015). Evaluation of the moment–rotation curve of I beam-to-CFT column connection with endplate, using mechanical modeling. International Journal of Steel Structures,15(4), 911–922.

    Article  Google Scholar 

  • Abdollahzadeh, G., & Shabanian, S. M. (2013a). Analytical and Experimental Studies on Behavior of Beam to Column Connections with Flange Plate under Monotonic Loading. Iranica Journal of Energy and Environment (IJEE),4(3), 208–211.

    Google Scholar 

  • Abdollahzadeh, G., & Shabanian, S. M. (2013b). Investigation the Behavior of Beam to Column Connection with Flange Plate by Using Component Method. Iranica Journal of Energy and Environment (IJEE),4(3), 238–242.

    Google Scholar 

  • Abdollahzadeh, G., & Shabanian, S. M. (2018). Experimental and numerical analysis of beam to column joints in steel structures. Frontiers of Structural and Civil Engineering,12(4), 642–661.

    Article  Google Scholar 

  • Anderson, D., Hines, E. L., Arthur, S. J., & Eiap, E. L. (1997). Application of artificial neural networks to the prediction of minor axis steel connections. Computers & Structures,63(4), 685–692.

    Article  Google Scholar 

  • Ballio, G., Calado, L., De Martino, A., Faella, C., & Mazzolani, F. M. (1987). Cyclic behaviour of steel beam-to-column joints experimental research. Costruzioni Metalliche,2, 69–88.

    Google Scholar 

  • Batebi, Y., Mirzagoltabar, A., Shabanian, S. M., & Fateri, S. (2013). Experimental investigation of shrinkage of nano hair reinforced concrete. Iranica Journal of Energy and Environment,4, 68–72.

    Google Scholar 

  • Bayo, E., Cabrero, J. M., & Gil, B. (2006). An effective component-based method to model semi-rigid connections for the global analysis of steel and composite structures. Engineering Structures,28(9), 97–108.

    Article  Google Scholar 

  • Beigzadeh, R., Rahimi, M., & Shabanian, S. R. (2012). Developing a feed forward neural network multilayer model for prediction of binary diffusion coefficient in liquids. Fluid Phase Equilibria,331, 48–57.

    Article  Google Scholar 

  • CEN. (2003). Eurocode 3: Design of steel structures. part 1.8: Design of joints (prEN 1993-1-8). European Committee of Standardization, Brussels.

  • Chen, W., & Kishi, N. (1989). Semi rigid steel beam- to- column connections: Data base and modeling. Journal of Structural Engineering New York,115(1), 105–119.

    Article  Google Scholar 

  • Dang, X., & Tan, Y. (2005). An inner product-based dynamic neural network hysteresis model for piezoceramic actuators. Sensors Actuators,121(2), 535–542.

    Article  Google Scholar 

  • Davoodi, M.R., Mahdavi, M & Mostafavian, S.A., 2012. Experimental and analytical determination of dynamic properties of a steel frame with bolted flange joints. Proceedings of International Conference on Engineering and Information Technology “ICEIT2012”, Toronto, Canada, Sep (pp. 17–18).

  • De Martino, A., Faella, C., & De Mazzolani, F. M. (1984). Simulation of beam-to-column joint behavior under cyclic loads. Costruzioni Metalliche,6, 345–356.

    Google Scholar 

  • De Stefano, M., De Luca, A., & Astaneh-Asl, A. (1994). Modeling of cyclic moment–rotation response of double-angle connections. Journal of Structural Engineering,120(1), 212–229.

    Article  Google Scholar 

  • Del Savio, A. A., Nethercot, D. A., Vellasco, P. C. G. S., Andradec, S. A. L., & Martha, L. F. (2009). Generalised component-based model for beam-to-column connections including axial versus moment interaction. Journal of Constructional Steel Research,65, 1876–1895.

    Article  Google Scholar 

  • Durodola, J. F., Li, N., Ramachandra, S., & Thite, A. N. (2017). A pattern recognition artificial neural network method for random fatigue loading life prediction. International Journal of Fatigue,99, 55–67.

    Article  Google Scholar 

  • Gawin, D., Lefik, M., & Schrefler, B. A. (2001). ANN approach to sorption hysteresis within a coupled hygro-thermo-mechanical FE analysis. International Journal for Numerical Methods in Engineering,50(2), 299–323.

    Article  Google Scholar 

  • Ghaboussi, J., Garrett, J. H., & Wu, X. (1990). Material modeling with neural networks. In: Proceedings of the International Conference on Numerical Methods in Engineering: Theory and Applications 701-717.

  • Ghaboussi, J., Garrett, J. H., & Wu, X. (1991). Knowledge-based modeling of material behavior with neural networks. Journal of Engineering Mechanics,117(1), 132–153.

    Article  Google Scholar 

  • Ghaboussi, J., Pecknold, D. A., Zhang, M., & Haj-Ali, R. M. (1998). Autoprogressive training of neural network constitutive models. International Journal for Numerical Methods in Engineering,42(1), 105–126.

    Article  Google Scholar 

  • Ghaboussi, J., & Sidarta, D. E. (1997). New method of material modeling using neural networks. 6th International Symposium on Numerical Models IN geomechanics, 393–400.

  • Ghaboussi, J., & Sidarta, D. E. (1998). New nested adaptive neural networks (NANN) for constitutive modeling. Computers and Geotechnics,22(1), 29–52.

    Article  Google Scholar 

  • Ghaboussi, J., Zhang, M., Wu, X., & Pecknold, D. (1997). Nested adaptive neural network: a new architecture. In: Proceedings of international conference on artificial neural networks in engineering, ANNIE97. 1997.

  • Debar, H. Becker, M., & Siboni D.. (1992). A neural network component for an intrusion detection system, IEEE Computer Society Symposium, 240–250.

  • Hassan, M. S., Salawdeh, S., & Goggins, J. (2018). Determination of geometrical imperfection models in finite element analysis of structural steel hollow sections under cyclic axial loading. Journal of Constructional Steel Research,141, 189–203.

    Article  Google Scholar 

  • Kaklauskas, G., & Ghaboussi, J. (2001). Stress-strain relations for cracked tensile concrete from RC beam tests. ASCE J struct eng,127(1), 64–73. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:1(64).

    Article  Google Scholar 

  • Kataoka, M. N., Ferreira, M. A., Debs, E. L., & Ana Lucia, H. C. (2015). Study on the behavior of beam-column connection in precast concrete structure. Computers and Concrete,16(1), 163–178.

    Article  Google Scholar 

  • Kim, J. H., Ghaboussi, J., & Elnashai, A. S. (2010). Mechanical and informational modeling of steel beam-to-column connections. Engineering Structures,32(2), 449–458.

    Article  Google Scholar 

  • Lee, K., Li, R., Chen, L., Oh, K., & Kim, K. S. (2014). Cyclic testing of steel column-tree moment connections with various beam splice lengths. Steel and Composite Structures,16(2), 221–231.

    Article  Google Scholar 

  • Li, J., Zhang, Z. P., & Li, C. W. (2017). Elastic-plastic stress-strain calculation at notch root under monotonic, uniaxial and multiaxial loadings. Theoretical and Applied Fracture Mechanics,92, 33–46.

    Article  Google Scholar 

  • Madas, P. J., & Elnashai, A. S. (1992). A component based model for beam-column connections. In: Proceedings of Tenth World Conference of Earthquake Engineering 4495-4499.

  • Mahdavi, M., Davoodi, M.R., & Mostafavian, A. (2012). Determination of joint stiffness of a three story steel frame by finite element model updating. In: Proceedings of the 15th World Conference on Earthquake Engineering (15WCEE), Lisbon, Portugal.

  • Mele, E., Calado, L., & De Luca, A. (2001). Cyclic behaviour of beam-to-column welded connections. Steel and Composite Structures,1(3), 269–282.

    Article  Google Scholar 

  • Pidaparti, R. M., & Palakal, M. J. (1993). Material model for composites using neural networks. AIAA Journal,31(8), 1533–1535.

    Article  Google Scholar 

  • Shabanian, S. R., & Abdoos, A. A. (2018). A hybrid soft computing approach based on feature selection for estimation of filtration combustion characteristics. Neural Computing and Applications,30(12), 3749–3757.

    Article  Google Scholar 

  • Shabanian, S. R., Edrisi, S., & Khoram, F. V. (2017). Prediction and optimization of hydrogen yield and energy conversion efficiency in a non-catalytic filtration combustion reactor for jet A and butanol fuels. Korean Journal of Chemical Engineering,34(8), 2188–2197.

    Article  Google Scholar 

  • Shabanian, S. R., Lashgari, S., & Hatami, T. (2016a). Application of intelligent methods for the prediction and optimization of thermal characteristics in a tube equipped with perforated twisted tape. Numerical Heat Transfer Part A Applications,70(1), 30–47.

    Article  Google Scholar 

  • Shabanian, S. M., Abdollahzadeh, G. R., & Tavakol, A. S. (2016). Column-base plate connection under monotonic load: Experimental and theoretical analysis. Global Journal of Research In Engineering, 16(3), 43–50.

    Google Scholar 

  • Tschemmernegg, Ferdinand, & Humer, Christian. (1988). The design of structural steel frames under consideration of the nonlinear behaviour of joints. Journal of Constructional Steel Research,11(2), 73–103.

    Article  Google Scholar 

  • Wales, M. W., & Rossow, E. C. (1983). Coupled moment-axial force behavior in bolted joints. Journal of Structural Engineering New York,112(3), 615–635.

    Google Scholar 

  • Wang, Y. Q., Chang, T., Shi, Y. J., Yuan, H. X., Yang, L., & Liao, D. F. (2014). Experimental study on the constitutive relation of austenitic stainless steel S31608 under monotonic and cyclic loading. Thin Walled Structures,83, 19–27.

    Article  Google Scholar 

  • Wu, X., and J. Ghaboussi. “Modelling unloading mechanism and cyclic behavior of concrete with adaptive neural networks”. In: Proceedings, Second Asian-Pacific Conference on Computational Mechanics. Sydney, Australia, 1993.

  • Xu, S., Li, A., & Wang, H. (2017). Bond properties for deformed steel bar in frost-damaged concrete under monotonic and reversed cyclic loading. Construction and Building Materials,148, 344–358.

    Article  Google Scholar 

  • Yun, S., Cox, J., & Sims, H. P. (2006). The forgotten follower: A contingency model of leadership and follower self- leadership. Journal of managerial Psychology,21(4), 374–388.

    Article  Google Scholar 

  • Yun, G. J., Ghaboussi, J., & Elnashai, A. S. (2008a). Self-learning simulation method for inverse nonlinear modeling of cyclic behavior of connections. Computer Methods in Applied Mechanics and Engineering,197(33–40), 2836–2857.

    Article  Google Scholar 

  • Yun, G. J., Ghaboussi, J., & Elnashai, A. S. (2008b). A design-variable-based inelastic hysteretic model for beam-column connections. Earthquake Engineering and Structural Dynamics,37(4), 535–555.

    Article  Google Scholar 

  • Yun, G. J., Ghaboussi, J., & Elnashai, A. S. (2008c). A new neural network-based model for hysteretic behavior of msterials. International Journal for Numerical Methods in Engineering,73(4), 447–469.

    Article  MathSciNet  Google Scholar 

  • Zhang, M. M. (1996). Neural network material models determined from structural tests. Doctoral dissertation, Department of Civil Engineering, University of Illinois at Urbana-Champaign.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Abdollahzadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest and this article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shabanian, S.M., Abdollahzadeh, G. & Davoodi, M. Evaluation of the moment–rotation curve of steel beam-to-column joints with flange-plate. Asian J Civ Eng 21, 517–531 (2020). https://doi.org/10.1007/s42107-019-00213-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-019-00213-2

Keywords

Navigation