Skip to main content
Log in

Shear strength of self-compacting concrete and recycled aggregate concrete beams: an appraisal of design codes

  • Original Paper
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Provisions are given in design codes for the calculation of shear strength of conventional concrete (CC) beams. In this paper, a database is generated for self-compacting concrete (SCC) and recycled aggregate concrete (RAC) slender beams with and without shear reinforcement which were investigated for shear strength. Shear capacities of 103 SCC beams and 109 RAC beams with and without shear reinforcement are calculated using the provisions of ACI 318-14, JSCE-2007, NZS 3101-2006 and AS 3600-2009. Calculated nominal shear strengths (Vn) are compared with the experimental shear strengths (Vexp) and statistical parameters are obtained for each code. It was found that all the four codes yielded unconservative estimates of the shear capacities for SCC and RAC beams without shear reinforcement having longitudinal reinforcement less than 1% and depth greater than 450 mm. All the four codes produced reasonable and conservative estimates of the shear capacities of SCC and RAC beams with shear reinforcement. AS 3600-2009 produced minimum average of Vexp/Vn with least scatter but at the same time it yielded maximum unconservative results. A modification in the depth factor of AS 3600-2009 reduced the percentage of unconservative results from 18.67 to 7.8% for SCC beams and 24.67 to 8% for RAC beams without any increase in coefficient of variation (COV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • ACI (American Concrete Institute). (2014). Building code requirements for reinforced concrete. ACI 318-14.

  • Ahmad, S., & Bhargava, P. (2018). Shear strength models for reinforced concrete slender beams: A comparative study. Structures, 16, 119–128. (Elsevier).

    Article  Google Scholar 

  • Ahmad, S., Bhargava, P., & Chourasia, A. (2018). Shear transfer capacity of reinforced concrete exposed to fire. IOP Conference Series: Earth and Environmental Science, 140(1), 012146. (IOP Publishing).

    Article  Google Scholar 

  • Ahmad, S., & Umar, A. (2018). Rheological and mechanical properties of self-compacting concrete with glass and polyvinyl alcohol fibres. Journal of Building Engineering, 17, 65–74.

    Article  Google Scholar 

  • Ajdukiewicz, A. B., & Kliszczewicz, A. T. (2007). Comparative tests of beams and columns made of recycled aggregate concrete and natural aggregate concrete. Journal of Advanced Concrete Technology, 5(2), 259–273.

    Article  Google Scholar 

  • Alghazali, H. H., & Myers, J. J. (2017). Shear behavior of full-scale high volume fly ash-self consolidating concrete (HVFA-SCC) beams. Construction and Building Materials, 157, 161–171.

    Article  Google Scholar 

  • Al-Zahraa, F., El-Mihilmy, M. T., & Bahaa, T. (2011). Experimental investigation of shear strength of concrete beams with recycled concrete aggregates. International Journal of Materials and Structural Integrity, 5(4), 291–310.

    Article  Google Scholar 

  • Arezoumandi, M., Drury, J., Volz, J. S., & Khayat, K. H. (2015). Effect of recycled concrete aggregate replacement level on shear strength of reinforced concrete beams. ACI Materials Journal, 112(4), 559.

    Article  Google Scholar 

  • Arezoumandi, M., & Volz, J. S. (2013). An experimental study on shear strength of chemically-based self-consolidating concrete. International Journal of Concrete Structures and Materials, 7(4), 273–285.

    Article  Google Scholar 

  • Australian code AS 3600. (2009). Australian standard for concrete structures (p. 213). North Sydney: Standards Australia.

  • Ashour, S. A., Hasanain, G. S., & Wafa, F. F. (1992). Shear behavior of high-strength fiber reinforced concrete beams. Structural Journal, 89(2), 176–184.

    Google Scholar 

  • Biolzi, L., Cattaneo, S., & Mola, F. (2014). Bending-shear response of self-consolidating and high-performance reinforced concrete beams. Engineering Structures, 59, 399–410.

    Article  Google Scholar 

  • Boel, V., Helincks, P., Desnerck, P., & De Schutter, G. (2010). Bond behaviour and shear capacity of self-compacting concrete. Design, production and placement of self-consolidating concrete (pp. 343–353). Dordrecht: Springer.

    Book  Google Scholar 

  • Choi, H. B., Yi, C. K., Cho, H. H., & Kang, K. I. (2010). Experimental study on the shear strength of recycled aggregate concrete beams. Magazine of Concrete Research, 62(2), 103–114.

    Article  Google Scholar 

  • Choi, W. C., & Yun, H. D. (2017). Shear strength of reinforced recycled aggregate concrete beams without shear reinforcements. Journal of Civil Engineering and Management, 23(1), 76–84.

    Google Scholar 

  • Etxeberria, M., Mari, A. R., & Vázquez, E. (2007). Recycled aggregate concrete as structural material. Materials and Structures, 40(5), 529–541.

    Article  Google Scholar 

  • Fathifazl, G., Razaqpur, A. G., Isgor, O. B., Abbas, A., Fournier, B., & Foo, S. (2010). Shear strength of reinforced recycled concrete beams with stirrups. Magazine of Concrete Research, 62(10), 685–699.

    Article  Google Scholar 

  • Fathifazl, G., Razaqpur, A. G., Isgor, O. B., Abbas, A., Fournier, B., & Foo, S. (2011). Shear capacity evaluation of steel reinforced recycled concrete (RRC) beams. Engineering Structures, 33(3), 1025–1033.

    Article  Google Scholar 

  • Gonzalez-Fonteboa, B., & Martinez-Abella, F. (2007). Shear strength of recycled concrete beams. Construction and Building Materials, 21(4), 887–893.

    Article  Google Scholar 

  • González-Fonteboa, B., Martínez-Abella, F., Martínez-Lage, I., & Eiras-López, J. (2009). Structural shear behaviour of recycled concrete with silica fume. Construction and Building Materials, 23(11), 3406–3410.

    Article  Google Scholar 

  • Han, B. C., Yun, H. D., & Chung, S. Y. (2001). Shear capacity of reinforced concrete beams made with recycled-aggregate. Special Publication, 200, 503–516.

    Google Scholar 

  • Hassan, A. A. A., Hossain, K. M. A., & Lachemi, M. (2008). Behavior of full-scale self-consolidating concrete beams in shear. Cement & Concrete Composites, 30(7), 588–596.

    Article  Google Scholar 

  • Helincks, P., Boel, V., De Corte, W., De Schutter, G., & Desnerck, P. (2013). Structural behaviour of powder-type self-compacting concrete: Bond performance and shear capacity. Engineering Structures, 48, 121–132.

    Article  Google Scholar 

  • Hirata, F. P., de Andrade, R. G. M., & Della Bella, J. C. (2013). Comparative analysis between prediction models in codes and test data for shear strength. Revista IBRACON de Estruturas e Materiais, 6(6), 875–902.

    Article  Google Scholar 

  • Ignjatović, I. S., Marinković, S. B., & Tošić, N. (2017). Shear behaviour of recycled aggregate concrete beams with and without shear reinforcement. Engineering Structures, 141, 386–401.

    Article  Google Scholar 

  • JSCE Guidelines for Concrete No. 15. 2007. Standard specifications for concrete structures-2007, Japan

  • Kapoor, K., Singh, S. P., & Singh, B. (2016a). Durability of self-compacting concrete made with Recycled Concrete Aggregates and mineral admixtures. Construction and Building Materials, 128, 67–76.

    Article  Google Scholar 

  • Kapoor, K., Singh, S. P., & Singh, B. (2016b). Evaluating the durability properties of self compacting concrete made with recycled concrete aggregates. Journal of Materials and Engineering Structures « JMES», 3(3), 107–116.

    Google Scholar 

  • Katkhuda, H., & Shatarat, N. (2016). Shear behavior of reinforced concrete beams using treated recycled concrete aggregate. Construction and Building Materials, 125, 63–71.

    Article  Google Scholar 

  • Khatib, J. M. (2008). Performance of self-compacting concrete containing fly ash. Construction and Building Materials, 22(9), 1963–1971.

    Article  Google Scholar 

  • Knaack, A. M., & Kurama, Y. C. (2014). Behavior of reinforced concrete beams with recycled concrete coarse aggregates. Journal of Structural Engineering, 141(3), B4014009.

    Article  Google Scholar 

  • Lima de Resende, T., da Conceição Domingues Shehata, L., & Abd El Malik Shehata, I. (2016). Shear strength of self-compacting concrete beams with small stirrups ratios. Structural Concrete, 17(1), 3–10.

    Article  Google Scholar 

  • Lin, C. H., & Chen, J. H. (2012). Shear behavior of self-consolidating concrete beams. ACI Structural Journal, 109(3), 307.

    Google Scholar 

  • Mphonde, A. G., & Frantz, G. C. (1984). July). Shear tests of high-and low-strength concrete beams without stirrups. Journal Proceedings (Vol., 81(4), 350–357.

    Google Scholar 

  • NZS 3101. (2006). The design of concrete structures.

  • Okamura, H., & Higai, T. (1980). Proposed design equation for shear strength of reinforced concrete beams without web reinforcement. Proceedings of the Japan Society of Civil Engineers, 1980(300), 131–141. (Japan Society of Civil Engineers).

    Article  Google Scholar 

  • Okamura, H., & Ouchi, M. (2003). Self-compacting concrete. Journal of advanced concrete technology, 1(1), 5–15.

    Article  Google Scholar 

  • Pradhan, S., Kumar, S., & Barai, S. V. (2018). Shear performance of recycled aggregate concrete beams: an insight for design aspects. Construction and Building Materials, 178, 593–661.

    Article  Google Scholar 

  • Rahal, K. N., & Alrefaei, Y. T. (2017). Shear strength of longitudinally reinforced recycled aggregate concrete beams. Engineering Structures, 145, 273–282.

    Article  Google Scholar 

  • Safan, M. A. (2012). Shear strength of concrete beams cast with self-compacting concrete containing different fillers and coarse aggregates. Canadian Journal of Civil Engineering, 39(7), 760–770.

    Article  Google Scholar 

  • Sonebi, M., & Bartos, P. J. M. (2002). Filling ability and plastic settlement of self-compacting concrete. Materials and Structures, 35(8), 462–469.

    Article  Google Scholar 

  • Walraven, J. C. (1981). Fundamental analysis of aggregate interlock. Journal of the Structural Division, 107(11), 2245–2270.

    Google Scholar 

  • Xiao, J. (2018). Recycled aggregate concrete. Recycled aggregate concrete structures (pp. 65–98). Berlin, Heidelberg: Springer.

    Google Scholar 

  • Xiao, J., Li, J., & Zhang, C. (2005). Mechanical properties of recycled aggregate concrete under uniaxial loading. Cement and Concrete Research, 35(6), 1187–1194.

    Article  Google Scholar 

  • Zsutty, T. (1971). Shear strength prediction for separate catagories of simple beam tests. Journal Proceedings, 68(2), 138–143.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhan Ahmad.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

SCC and RAC beams without shear reinforcement

Author

Specimen

Rr (%)

\(f_{\text{c}}^{\prime }\) (MPa)

a/d

b (mm)

d (mm)

ρ (%)

da (mm)

Vexp (kN)

Self-compacting concrete beams

 Hassan et al. (2008)

1SCC150

45

2.5

400

102.5

0.01

10

73.8

2SCC150

45

2.5

400

100

0.02

10

81.2

1SCC250

45

2.5

400

202.5

0.01

10

115.83

2SCC250

45

2.5

400

197.5

0.02

10

127.98

1SCC363

45

2.5

400

310.5

0.01

10

152.766

2SCC363

45

2.5

400

305.5

0.02

10

166.192

1SCC500

45

2.5

400

447.5

0.01

10

180.79

2SCC500

45

2.5

400

442.5

0.02

10

226.56

1SCC750

45

2.5

400

667.5

0.01

10

250.98

2SCC750

45

2.5

400

650.5

0.02

10

314.84

 Boel et al. (2010)

SCC1-2.5

60.7

2.5

100

130

0.0121

8

23.96

SCC1-3

60.7

3

100

130

0.0121

8

22.35

SCC2-2.5

55.8

2.5

100

130

0.0121

8

21.2

SCC2-3

55.8

3

100

130

0.0121

8

20.31

 Arezoumandi and Volz (2013)

NS-4-1

53.5

3

300

400

0.0127

19

129.6

NS-4-2

39.6

3

300

400

0.0127

19

127.2

NS-6-1

53.5

3.2

300

375

0.0203

19

177.75

NS-6-2

39.6

3.2

300

375

0.0203

19

168.75

NS-8-1

53.5

3.2

300

375

0.0271

19

210.37

NS-8-2

39.6

3.2

300

375

0.0271

19

185.62

 Safan (2012)

D1/10

75

2.59

100

135

0.0116

19

23.62

D1/12

75

2.61

100

134

0.0168

19

25.19

G1/10

56

2.59

100

135

0.0116

19

17.95

G1/12

56

2.61

100

134

0.0168

19

20.77

D2/10

64

2.59

100

135

0.0116

19

19.84

D2/12

64

2.61

100

134

0.0168

19

21.84

G2/10

47

2.59

100

135

0.0116

19

16.2

G2/12

47

2.61

100

134

0.0168

19

17.42

D3/10

53

2.59

100

135

0.0116

19

19.30

D3/12

53

2.61

100

134

0.0168

19

23.71

G3/10

37

2.59

100

135

0.0116

19

21.19

G3/12

37

2.61

100

134

0.0168

19

22.51

D4/10

55

2.59

100

135

0.0116

19

18.9

D4/12

55

2.61

100

134

0.0168

19

22.37

G4/10

37

2.59

100

135

0.0116

19

18.22

G4/12

37

2.61

100

134

0.0168

19

18.89

D5/10

51

2.59

100

135

0.0116

19

19.57

D5/12

51

2.61

100

134

0.0168

19

22.51

G5/10

33

2.59

100

135

0.0116

19

14.71

G5/12

33

2.61

100

134

0.0168

19

18.76

D6/10

48

2.59

100

135

0.0116

19

21.6

D6/12

48

2.61

100

134

0.0168

19

22.11

G6/10

30

2.59

100

135

0.0116

19

18.9

G6/12

30

2.61

100

134

0.0168

19

20.1

D7/10

41

2.59

100

135

0.0116

19

15.12

D7/12

41

2.61

100

134

0.0168

19

19.69

G7/10

26

2.59

100

135

0.0116

19

19.44

G7/12

26

2.61

100

134

0.0168

19

16.75

 Helincks et al. (2013)

SCC-1a

54.56

2.5

100

130

0.01

16

23.92

SCC-1a

54.56

3

100

130

0.01

16

22.36

SCC-1b

48

2.5

100

130

0.015

16

23.66

SCC-1b

48

2.5

100

130

0.02

16

23.4

SCC-1b

48

3

100

130

0.015

16

24.05

SCC-1b

48

3

100

130

0.02

16

24.31

SCC-2

48

2.5

100

130

0.01

16

21.19

SCC-2

48

3

100

130

0.01

16

20.28

SCC-3a

54.8

2.5

100

130

0.01

16

23.27

SCC-3a

54.8

3

100

130

0.01

16

19.5

SCC-4a

52.72

2.5

100

130

0.01

8

23.01

SCC-4a

52.72

3

100

130

0.01

8

22.88

 Biolzi egt al. (2014)

SCC40-M–N-1

42.64

2.5

170

260

0.00909

15

51.71

SCC40-M–N-2

42.64

2.5

170

260

0.00909

15

49.06

SCC40-L-N-1

42.64

3.5

170

260

0.00909

15

47.29

SCC40-L-N-2

42.64

3.5

170

260

0.00909

15

53.92

SCC40-XL-N-1

42.64

4

170

260

0.00909

15

34.03

SCC40-XL-N-2

42.64

4

170

260

0.00909

15

47.73

 Alghazali and Myers (2017)

50-5 N

53.5

3

305

406.67

0.0169

10

149.2

50-6 N

53.5

3

305

406.67

0.0203

10

143.8

50-8 N

53.5

3

305

406.67

0.0271

10

144

60-5 N

45.9

3

305

406.67

0.0169

10

142.5

60-6 N

45.9

3

305

406.67

0.0203

10

175

60-8 N

45.9

3

305

406.67

0.0271

10

150

70-5 N

52.9

3

305

406.67

0.0169

10

146

70-6 N

52.9

3

305

406.67

0.0203

10

162

70-8 N

52.9

3

305

406.67

0.0271

10

154

Recycled aggregate concrete beams

 Han et al. (2001)

R-3.0-N

100

31.23

3

170

270

0.011

25

55.08

R-4.0-N

100

31.89

4

170

270

0.011

25

50.95

 Gonzalez-Fonteboa and Martinez-Abella (2007)

V0RCS

50

41.45

3.3

200

303

0.0299

25

83.88

 Choi et al. (2010)

RARAC30-H2.5

30

19.65

2.5

200

360

0.0161

25

73.44

RARAC30-H3.25

30

19.65

3.25

200

360

0.0161

25

72.72

RARAC50-H2.5

50

19.32

2.5

200

360

0.0161

25

79.2

RARAC50-H3.25

50

19.32

3.25

200

360

0.0161

25

64.08

RARAC100-H2.5

100

18.05

2.5

200

360

0.0161

25

76.32

RARAC100-H3.25

100

18.05

3.25

200

360

0.0161

25

51.84

RARAC30-L2.5

30

19.65

2.5

200

360

0.0053

25

51.12

RARAC30-M2.5

30

19.65

2.5

200

360

0.0083

25

70.56

RARAC30-H2.5

50

19.65

2.5

200

360

0.0161

25

73.44

RARAC50-L2.5

50

19.32

2.5

200

360

0.0053

25

51.84

RARAC50-M2.5

100

19.32

2.5

200

360

0.0083

25

60.48

RARAC50-H2.5

100

19.32

2.5

200

360

0.0161

25

79.2

RARAC100-L2.5

100

18.05

2.5

200

360

0.0053

25

54

RARAC100-M2.5

100

18.05

2.5

200

360

0.0083

25

63.36

RARAC100-H2.5

100

18.05

2.5

200

360

0.0161

25

76.32

 Fathifazl et al. (2011)

EM-2.7

63.5

41.6

2.7

200

309

0.0162

19

103.9

EM-4

63.5

41.6

4

200

305

0.0246

19

83.2

EV-4

74.3

49.1

4

200

305

0.0246

19

105.6

 Knaack and Kurama (2014)

S50-1a

50

43.6

3.875

150

200

0.0134

19

44

S50-1b

50

43.6

3.875

150

200

0.0134

19

39.1

S50-2a

50

40.2

3.875

150

200

0.0134

19

43.7

S50-2b

50

40.2

3.875

150

200

0.0134

19

41.2

S100-1a

100

41.4

3.875

150

200

0.0134

19

36.4

S100-1b

100

41.4

3.875

150

200

0.0134

19

38

S100-2a

100

35.7

3.875

150

200

0.0134

19

39.9

S100-2b

100

35.7

3.875

150

200

0.0134

19

36.1

 Arezoumandi et al. (2015)

RC50NS-4

50

32.03

3

300

406

0.0127

25

116.93

RC50NS-4

50

35.52

3

300

406

0.0127

25

112.06

RC50NS-6

50

32.03

3.2

300

380

0.0203

25

151.62

RC50NS-6

50

35.52

3.2

300

380

0.0203

25

148.2

RC50NS-8

50

32.03

3.2

300

380

0.0271

25

172.14

RC50NS-8

50

35.52

3.2

300

380

0.0271

25

168.72

RC100NS-4

100

30

3

300

406

0.0127

25

114.49

RC100NS-4

100

34.14

3

300

406

0.0127

25

113.27

RC100NS-6

100

30

3.2

300

380

0.0203

25

143.64

RC100NS-6

100

34.14

3.2

300

380

0.0203

25

124.26

RC100NS-8

100

30

3.2

300

380

0.0271

25

131.1

RC100NS-8

100

34.14

3.2

300

380

0.0271

25

140.22

 Katkhuda and Shatarat (2016)

R50-3

50

25.2

3

206

260

0.019

20

49.5

R100-3

100

23.2

3

206

260

0.019

20

46.45

T50-3

50

28.05

3

206

260

0.019

20

55

T100-3

100

26.6

3

206

260

0.019

20

55.61

R50-L-2.5-LR

50

27.95

2.5

150

260

0.0103

20

54.87

R50-M-2.5-LR

50

35.55

2.5

150

260

0.0103

20

55.67

R100-L-2.5-LR

100

31.85

2.5

150

260

0.0103

20

46.86

R100-M-2.5-LR

100

38.7

2.5

150

260

0.0103

20

56.47

 Choi and Yun (2017)

S-2.5-A100

100

23.2

2.5

400

525

0.0188

20

259.34

S-3-A100-1

100

23.2

3

400

525

0.0188

20

227.11

S-3-A100-2

100

23.2

3

400

525

0.0188

20

239.01

S-4-A100-1

100

23.2

4

400

525

0.0188

20

250.91

S-4-A100-2

100

23.2

4

400

525

0.0188

20

216.98

S-5-A30-1

30

27.2

5

400

525

0.0188

20

235.44

S-5-A30-2

30

27.2

5

400

525

0.0188

20

239.21

S-5-A60-1

60

25.6

5

400

525

0.0188

20

205.91

S-5-A60-2

60

25.6

5

400

525

0.0188

20

206.08

S-5-A100-1

100

23.2

5

400

525

0.0188

20

206.51

S-5-A100-2

100

23.2

5

400

525

0.0188

20

219.30

 Ignjatovic et al. (2017)

RAC-50-1

50

46.3

4.2

200

238

0.025

31.5

91.75

RAC-100-1

100

42.4

4.2

200

238

0.025

31.5

105

 Rahal and Alrefaei (2017)

35A-0-100

100

28.64

2.99

150

388

0.0079

25

55.06

35A-0-10

10

29.28

2.99

150

388

0.0079

25

43.07

35A-0-20

20

28

2.99

150

388

0.0079

25

45.05

35A-0-20R

20

28.24

2.99

150

388

0.0079

25

40.62

35A-0-35

35

28.24

2.99

150

388

0.0079

25

49.47

35A-0-50

50

30.48

2.99

150

388

0.0079

25

45.63

35A-0-75

75

29.28

2.99

150

388

0.0079

25

47.49

35-S-0-5

5

29.92

2.99

150

388

0.0079

25

47.96

35-S-0-10

10

27.84

2.99

150

388

0.0079

25

56.57

35-S-0-35

35

28.32

2.99

150

388

0.0079

25

53.08

35-S-0-50

50

27.2

2.99

150

388

0.0079

25

54.77

35-S-0-75

75

28.08

2.99

150

388

0.0079

25

47.78

 Pradhan et al. (2018)

RAC-B1

100

42.82

2.6

200

265

0.0075

20

81.1

RAC-B2

100

42.82

2.6

200

265

0.0075

20

81.3

RAC-B3

100

42.82

2.6

200

265

0.0131

20

92.3

  1. Rr recycled aggregate replacement ratio; \(f_{\text{c}}^{\prime }\) cylindrical compressive strength of concrete; a/d shear-span-to-depth ratio; b width; d effective depth; ρ longitudinal reinforcement ratio; da maximum aggregate size; Vexp experimental shear strength

SCC and RAC beams with shear reinforcement

Author

Specimen

Rr (%)

\(f_{\text{c}}^{\prime }\)(MPa)

a/d

b (mm)

d (mm)

ρ (%)

da (mm)

ρvfy (MPa)

Vexp (kN)

Lin and Chen (2012)

S11

32.8

3

240

298

0.041

10

1.22

268.91

S12

38.7

3

240

298

0.041

10

1.22

294.66

S13

47.8

3

240

298

0.041

10

1.22

320.40

S14

39

2.5

240

298

0.041

10

1.22

323.98

S15

40.2

3.5

240

298

0.041

10

1.22

281.07

S16

42.3

3

240

298

0.041

10

1.63

338.28

S17

39

3

240

298

0.041

10

1.63

310.39

S18

40.3

3

240

298

0.041

10

1.44

315.40

S21

30.4

3

240

298

0.041

10

1.22

217.42

S22

42.9

3

240

298

0.041

10

1.22

282.5

S23

49.1

3

240

298

0.041

10

1.22

308.96

S24

38.4

2.5

240

298

0.041

10

1.22

323.27

S25

39.5

3.5

240

298

0.041

10

1.22

249.60

S26

39.9

3

240

298

0.041

10

1.63

281.78

S27

39.5

3

240

298

0.041

10

1.64

292.51

S28

38.5

3

240

298

0.041

10

1.44

248.17

Arezoumandi and Volz (2013)

S-8-2

34.8

3.2

300

375

0.0271

19

0.8

231.75

Biolzi et al. (2014)

SCC40-M-S-1

42.64

2.5

170

260

0.00909

15

1.31

109.61

SCC40-M-S-2

42.64

2.5

170

260

0.00909

15

1.31

104.75

Lima de Resende et al. (2016)

 

71.6

2.8

175

409

0.025

19

0.975

252.65

V2

71.6

2.8

175

409

0.025

19

0.813

250.51

V3

71.6

2.8

175

409

0.025

19

0.659

173.92

V4

71.6

2.8

175

409

0.025

19

0.508

150.30

 

V5

71.6

2.8

175

416

0.02

19

0.659

128.12

V6

71.6

2.8

175

407

0.025

19

0.962

158.11

Alghazali and Myers (2017)

50-8S

53.5

3

305

406.67

0.0271

10

0.41

330.5

 

60-8S

45.9

3

305

406.67

0.0271

10

0.41

327.3

70-8S

52.9

3

305

406.67

0.0271

10

0.41

354.1

Recycled aggregate concrete beams

 Gonzalez-Fonteboa and Martinez-Abella (2007)

50

V24RC

39.3

3.3

200

303

0.0298

25

0.6

164.3

50

V17RC

41.5

3.3

200

303

0.0298

25

0.85

177

50

V13RC

40.5

3.3

200

303

0.0298

25

1.1

233.6

 Etxeberria et al. (2007)

25

HR-25-1

42.38

3.3

200

304

0.0297

25

0.6528

238

25

HR-25-2

42.38

3.3

200

304

0.0297

25

0.90304

169

25

HR-25-3

42.38

3.3

200

304

0.0297

25

1.1968

186.5

50

HR-50-1

41.34

3.3

200

304

0.0297

25

0.6528

164

50

HR-50-2

41.34

3.3

200

304

0.0297

25

0.90304

176

50

HR-50-3

41.34

3.3

200

304

0.0297

25

1.1968

220

100

HR-100-1

39.75

3.3

200

304

0.0297

25

0.6528

168

100

HR-100-2

39.75

3.3

200

304

0.0297

25

0.90304

163

100

HR-100-3

39.75

3.3

200

304

0.0297

25

1.1968

189.5

 Ajdukiewicz and Kliszczewicz (2007)

100

ORNm-b2

58.3

3.2

200

250

0.0155

16

0.65548

118.5

100

GRNl-b2

39.3

3.2

200

250

0.0155

16

0.65548

116.5

100

GRRl-b2

59.6

3.2

200

250

0.0155

16

0.65548

118.5

100

GRNm-b2

89.1

3.2

200

250

0.0155

16

0.65548

121

100

GRNh-b2

59.6

3.2

200

250

0.0155

16

0.65548

119

100

GRRh-b2

107.8

3.2

200

250

0.0155

16

0.65548

130.5

 Belen et al. (2009)

50

V24RCS

43.25

3.3

200

303

0.0299

25

1.05

147.33

50

V17RCS

44.49

3.3

200

303

0.0299

25

1.5

192.92

50

V13RCS

41.45

3.3

200

303

0.0299

25

1.95

202.36

 Fathifazl et al. (2010)

63.5

EM-3S-R

36.9

2.61

200

306

0.03

12.5

1.32

170.13

63.5

EM-6S-D

36.9

2.66

200

301

0.04

12.5

2.38

338.92

74.3

EV-6S-D

43.5

2.66

200

301

0.04

12.5

2.38

327.48

 Al-Zahra et al. (2011)

25

B11

30.42

2.5

100

180

0.019

20

0.915

47.25

50

B12

29.58

2.5

100

180

0.019

20

0.915

34.25

 Ignjatovic et al. (2017)

50

RAC-50-2

46.3

4.2

200

238

0.025

31.5

0.42

142

100

RAC-100-2

42.4

4.2

200

238

0.025

31.5

0.42

135

50

RAC-50-3

46.3

4.2

200

238

0.025

31.5

0.42

157

100

RAC-100-3

42.4

4.2

200

238

0.025

31.5

0.42

163

 Pradhan et al. (2018)

100

RAC-B6

42.82

2.6

200

265

0.0131

20

1.056

161.9

100

RAC-B7

42.82

2.6

200

265

0.0131

20

1.056

162.1

  1. Rr recycled aggregate replacement ratio; \(f_{\text{c}}^{\prime }\) cylindrical compressive strength of concrete; a/d shear-span-to-depth ratio; b width; d effective depth; ρ longitudinal reinforcement ratio; da maximum aggregate size; ρvfy confinement index; Vexp experimental shear strength

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, S., Inaam, Q. Shear strength of self-compacting concrete and recycled aggregate concrete beams: an appraisal of design codes. Asian J Civ Eng 20, 327–340 (2019). https://doi.org/10.1007/s42107-018-00108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-018-00108-8

Keywords

Navigation