Skip to main content
Log in

Tensile modeling of steel fiber reinforced concrete

  • Original Paper
  • Published:
Asian Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The use of steel fiber reinforced concrete (SFRC) as a structural material has shown an ever-increasing growth. Steel fibers have a significant effect on the mechanical properties of reinforced concrete, especially on its tensile behavior. For SFRC modeling, it is necessary to determine the stress–strain equations. Due to the complexity of strain–strain tests and the lack of access to these results before modeling and design, determining these equations without testing is a modeling requirement. So far, limited studies have been conducted on estimating the SFRC tensile stress–strain equation based on other SFRC characteristics. In this study, the results of 41 experimental specimens collected from the literature are used to present an equation to estimate the SFRC tensile stress–strain diagrams using the genetic programming (GP) method. The proposed equation had acceptable accuracy compared to the experimental results and other equations presented in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abrishami, H. H., & Mitchell, D. (1997). Influence of steel fibers on tension stiffening. Structural Journal, 94(6), 769–776.

    Google Scholar 

  • Afroughsabet, V., Biolzi, L., & Ozbakkaloglu, T. (2016). High-performance fiber-reinforced concrete: A review. Journal of Materials Science, 51(14), 6517–6551.

    Article  Google Scholar 

  • Ahmed, S. F. U., & Maalej, M. (2009). Tensile strain hardening behaviour of hybrid steel-polyethylene fibre reinforced cementitious composites. Construction and Building Materials, 23(1), 96–106.

    Article  Google Scholar 

  • Deluce, J. R. (2011). Cracking behaviour of steel fibre reinforced concrete containing conventional steel reinforcement. MASc thesis, University of Toronto, Toronto, Canada.

  • Ding, Y. N., & Yan, Y. C. (2011). Experimental investigation on uniaxial tensile properties of steel fiber reinforced concrete. Applied Mechanics and Materials, 94, 731–735.

    Article  Google Scholar 

  • Hameed, R., Sellier, A., Turatsinze, A., & Duprat, F. (2013). Metallic fiber-reinforced concrete behaviour: Experiments and constitutive law for finite element modeling. Engineering Fracture Mechanics, 103, 124–131.

    Article  Google Scholar 

  • Hassan, A., Jones, S., & Mahmud, G. (2012). Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC). Construction and Building Materials, 37, 874–882.

    Article  Google Scholar 

  • Iranian, C. C. (2005). Design and analysis rules of concrete structures. Tehran: Management and Planning Organization of Iran.

    Google Scholar 

  • Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  • Laskar, A., & Talukdar, S. (2008). Rheology of steel fiber reinforced concrete. Asian Journal of Civil  Engineering (Building and Housing), 9(2), 167–177.

    Google Scholar 

  • Li, F., & Li, Z. (2001). Continuum damage mechanics based modeling of fiber reinforced concrete in tension. International Journal of Solids and Structures, 38(5), 777–793.

    Article  MATH  Google Scholar 

  • Li, Z., Li, F., Chang, T. P., & Mai, Y.-W. (1998). Uniaxial tensile behavior of concrete reinforced with randomly distributed short fibers. Materials Journal, 95(5), 564–574.

    Google Scholar 

  • Lin, Z., & Li, V. C. (1997). Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces. Journal of the Mechanics and Physics of Solids, 45(5), 763–787.

    Article  Google Scholar 

  • Mathew, B. A., Sudha, C., Rajkumar, P. K., & Ravichandran, P. (2015). Investigations on tensile properties of high strength steel fibre reinforced concrete. Indian Journal of Science and Technology, 8(28), 1–6.

    Article  Google Scholar 

  • Meng, Y., Chengkui, H., & Jizhong, W. (2006). Characteristics of stress-strain curve of high strength steel fiber reinforced concrete under uniaxial tension. Journal of Wuhan University of Technology-Material Science Ed, 21(3), 132–137.

    Article  Google Scholar 

  • Mihai, I. C., Jefferson, A. D., & Lyons, P. (2016). A plastic-damage constitutive model for the finite element analysis of fibre reinforced concrete. Engineering Fracture Mechanics, 159, 35–62.

    Article  Google Scholar 

  • Moradi, M., Bagherieh, A., & Esfahani, M. R. (2016). Relationship of tensile strength of steel fiber reinforced concrete based on genetic programming. International Journal of Optimization in Civil Engineering, 6(3), 349–363.

    Google Scholar 

  • Moradi, M., Bagherieh, A., & Esfahani, M. R. (2018). Damage and plasticity constants of conventional and high-strength concrete part II: Statistical equation development using genetic programming. International Journal of Optimization in Civil Engineering, 8(1), 135–158.

    Google Scholar 

  • Naaman, A. E., Namur, G. G., Alwan, J. M., & Najm, H. S. (1991). Fiber pullout and bond slip. I: Analytical study. Journal of Structural Engineering, 117(9), 2769–2790.

    Article  Google Scholar 

  • Silva, S., & Almeida, J. GPLAB-a genetic programming toolbox for MATLAB. In Proceedings of the Nordic MATLAB conference, 2003 (pp. 273-278): Citeseer

  • Sorelli, L., Meda, A., & Plizzari, G. (2005). Bending and uniaxial tensile tests on concrete reinforced with hybrid steel fibers. Journal of Materials in Civil Engineering, 17(5), 519–527.

    Article  Google Scholar 

  • Sujivorakul, C. (2012). Model of hooked steel fibers reinforced concrete under tension. In G. J. Parra-Montesinos, H. W. Reinhardt, A. E. Naaman (Eds.), High performance fiber reinforced cement composites 6. RILEM State of the Art Reports, vol. 2 (pp. 19–26). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Suwannakarn, S. W. (2009). Post-cracking characteristics of high performance fiber reinforced cementitious composites. PhD Thesis, University of Michigan.

  • Wille, K., El-Tawil, S., & Naaman, A. (2014). Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading. Cement and Concrete Composites, 48, 53–66.

    Article  Google Scholar 

  • Xu, L., Huang, L., Chi, Y., & Mei, G. (2016). Tensile behavior of steel-polypropylene hybrid fiber-reinforced concrete. ACI Materials Journal, 113(2), 219–229.

    Google Scholar 

  • Zhan, Y., & Meschke, G. (2014). Analytical model for the pullout behavior of straight and hooked-end steel fibers. Journal of Engineering Mechanics, 140(12), 1–13.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Bagherieh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, M., Bagherieh, A.R. & Esfahani, M.R. Tensile modeling of steel fiber reinforced concrete. Asian J Civ Eng 20, 269–280 (2019). https://doi.org/10.1007/s42107-018-00104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42107-018-00104-y

Keywords

Navigation