Skip to main content

Advertisement

Log in

Nutrient Use Efficiency and Greenhouse Gas Emissions Affected by Fertilization and Farmyard Manure Addition in Rice–Wheat System

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Higher application of external inputs though increases crop production, but the intensively cultivated rice–wheat system in northwestern India is suffering from sub-optimal factor productivities and yield levels caused by increasing multi-nutrient deficiencies and decreasing soil organic carbon. Thus, the present study on target yield equation (TYE) based fertilizer management was carried-out to investigate the effect of chemical fertilizer applied alone and in combination with farmyard manure (FYM) on crop yield, nutrient use efficiency, and greenhouse gas intensity (GHGI) and a given output produced with minimum carbon emissions called carbon efficiency (CE) in rice (basmati)-wheat cropping sequence. Integrated nutrient management (INM) resulted in significantly higher rice and wheat grain yield by 5.98% and 5.30% respectively with 75%NPK + 25%FYM over 100%NPK. As a result, higher agronomic efficiency of N, P, and K of both crops was obtained with 75%NPK + 25%FYM. The highest increase in apparent nutrient recovery of N, P, and K of 18.7%, 19.1%, and 20.7% in rice and 11.2%, 18.6%, and 28.0 in wheat respectively were observed in 75%NPK + 25%FYM over 100%NPK. In addition, emission of greenhouse gases (GHGs) per unit of grain production was significantly reduced with FYM application, the lowest being in 75%NPK + 25%FYM. Even FYM incorporation improved C efficiency in both rice and wheat crops. This study thus emphasizes the advantages of TYE-INM for acquiring sustainable crop yields, and higher nutrient use efficiency while conserving the environment under an intensively cultivated rice–wheat cropping system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data shown in this article are public, but data files cannot be uploaded. The research data are confidential.

References

  • Alexandratos, N., & Bruinsma, J., 2012. World Agriculture towards 2030/2050: the 2012 revision, World Agriculture.

  • Ali, N., Khan, M. N., Ashraf, M. S., Ijaz, S., Saeed-ur-Rehman, H., Abdullah, M., Ahmad, N., Akram, H. M., & Farooq, M. (2020). Influence of different organic manures and their combinations on productivity and quality of bread wheat. Journal of Soil Science and Plant Nutrition, 20, 1949–1960. https://doi.org/10.1007/s42729-020-00266-2

    Article  CAS  Google Scholar 

  • Allen, J., Pascual, K. S., Romasanta, R. R., Trinh, M. V., Thach, T. V., Hung, N. V., Sander, B. O., & Chivenge, P. 2020. Rice straw management effects on greenhouse gas emissions and mitigation options. In: Gummert, M., Hung, N., Chivenge, P., Douthwaite, B. (eds) Sustainable rice straw management. Springer. https://doi.org/10.1007/978-3-030-32373-8_9.

  • Benbi, D. K. (2018). Carbon footprint and agricultural sustainability nexus in an intensively cultivated region of Indo-Gangetic Plains. Science of the Total Environment, 644, 611–623. https://doi.org/10.1016/j.scitotenv.2018.07.018

    Article  CAS  PubMed  Google Scholar 

  • Blumenthal, J. D. M., Baltensperger, D. D., Cassman, K. G., Mason, S. C., & Pavlista, A. D. (2008). Importance and effect of nitrogen on crop quality and health. Nitrogen Environmenthttps://doi.org/10.1016/B978-0-12-374347-3.00003-2

    Article  Google Scholar 

  • Brar, B. S., Singh, J., Singh, G., & Kaur, G. (2015). Effects of long-term application of inorganic and organic fertilizers on soil organic carbon and physical properties in maize–wheat rotation. Agronomy, 5(2), 220–238.

    Article  Google Scholar 

  • Burney, J. A., Davis, S. J., & Lobell, D. B. (2010). Greenhouse gas mitigation by agricultural intensification. The Proceedings of the National Academy of Sciences, 107, 12052–12057. https://doi.org/10.1073/PNAS.0914216107

    Article  CAS  Google Scholar 

  • Chen, X. P., Zhang, F. S., Cui, Z. L., Li, F., & Li, J. L. (2010). Optimizing soil nitrogen supply in the root zone to improve maize nitrogen management. Soil Science Society of America Journal, 74, 1367–1373.

    Article  CAS  Google Scholar 

  • Ding, Z., Kheir, A. M. S., Ali, M. G. M., Ali, O. A. M., Abdelaal, A. I. N., Lin, X., & He, Z. (2020). The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Scientific Reports. https://doi.org/10.1038/s41598-020-59650-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobermann, A., Witt, C., Abdulrachman, S., Gines, H. C., Nagarajan, R., Son, T. T., Tan, P. S., Wang, G. H., Chien, N. V., Thoa, V. T. K., Phung, C. V., Stalin, P., Muthukrishnan, P., Ravi, V., Babu, M., Simbahan, G. C., Adviento, M. A. A., & Bartolome, V. (2003). Estimating indigenous nutrient supplies for site-specific nutrient management in irrigated rice. Agronomy Journal, 95, 924–935. https://doi.org/10.2134/AGRONJ2003.9240

    Article  Google Scholar 

  • Duan, Y., Xu, M., Gao, S., Yang, X., Huang, S., Liu, H., & Wang, B. (2014). Nitrogen use efficiency in a wheat-corn cropping system from 15 years of manure and fertilizer applications. Field Crops Research, 157, 47–56. https://doi.org/10.1016/j.fcr.2013.12.012

    Article  Google Scholar 

  • Fageria, N. K., & Baligar, V. C. (2005). Enhancing nitrogen use efficiency in crop plants. Advances in Agronomy. https://doi.org/10.1016/S0065-2113(05)88004-6

    Article  Google Scholar 

  • FAO. (2017). FAOSTAT database collections. Food and Agriculture Organization of the United Nations.

    Google Scholar 

  • Gan, Y., Liang, C., Campbell, C. A., Zentner, R. P., Lemke, R. L., Wang, H., & Yang, C. (2012). Carbon footprint of spring wheat in response to fallow frequency and soil carbon changes over 25 years on the semiarid Canadian prairie. European Journal of Agronomy, 43, 175–184. https://doi.org/10.1016/j.eja.2012.07.004

    Article  CAS  Google Scholar 

  • Gan, H. Y., Schöning, I., Schall, P., Ammer, C., & Schrumpf, M. (2020). Soil organic matter mineralization as driven by nutrient stoichiometry in soils under differently managed forest stands. Frontiers in Forests and Global Change, 3, 99. https://doi.org/10.3389/ffgc.2020.00099

    Article  Google Scholar 

  • Ge, G., Li, Z., Fan, F., Chu, G., Hou, Z., & Liang, Y. (2010). Soil biological activity and their seasonal variations in response to long-term application of organic and inorganic fertilizers. Plant and Soil, 326, 31. https://doi.org/10.1007/s11104-009-0186-8

    Article  CAS  Google Scholar 

  • Graham, R., Wortman, S., & Pittelkow, C. (2017). Comparison of organic and integrated nutrient management strategies for reducing soil N2O emissions. Sustainability, 9, 510. https://doi.org/10.3390/su9040510

    Article  CAS  Google Scholar 

  • Han, X., Hu, C., Chen, Y., Qiao, Y., Liu, D., Fan, J., Li, S., & Zhang, Z. (2020). Crop yield stability and sustainability in a rice-wheat cropping system based on 34-year field experiment. European Journal of Agronomy, 113, 125965. https://doi.org/10.1016/j.eja.2019.125965

    Article  CAS  Google Scholar 

  • Jagdeep, S., Mavi, M. S., & Saini, S. P. (2021). Target yield based integrated nutrient management in rice (Oryza sativa) and wheat (Triticum aestivum) cropping system. Indian Journal of Agricultural Sciences, 91(10), 1528–1531.

    Google Scholar 

  • Jat, S. L., Parihar, C. M., Singh, A. K., Kumar, B., Choudhary, M., Nayak, H. S., Parihar, M. D., Parihar, N., & Meena, B. R. (2019). Energy auditing and carbon footprint under long-term conservation agriculture-based intensive maize systems with diverse inorganic nitrogen management options. Science of the Total Environment, 664, 659–668. https://doi.org/10.1016/j.scitotenv.2019.01.425

    Article  CAS  PubMed  Google Scholar 

  • Jiang, D., Hengsdijk, H., Dai, T. B., De Boer, W., Jing, Q., & Cao, W. X. (2006). Long-term effects of manure and inorganic fertilizers on yield and soil fertility for a winter wheat-maize system in Jiangsu, China. Pedosphere, 16, 25–32. https://doi.org/10.1016/S1002-0160(06)60022-2

    Article  Google Scholar 

  • Juwarkar, A. S., Thawalae, P. R., & Baitula, U. H. 1995. Sustainable rice production through integrated plant nutrition system-India experience. In: F.J. Dent and S. Gangwani (eds). Progress and problems in the extension of integrated plant nutrition system (IPNS) at farm level in Asia, pp. 87. FAO Regional Office for Asia and Pacific, Bangkok, Thailand.

  • Khosa, M. K., Sekhon, B. S., Mavi, M. S., Benipal, D. S., & Benbi, D. K. (2012). Performance of target yield-based fertilizer prescription equations in rice-wheat cropping system in Punjab. Indian Journal of Fertilisers, 8(2), 14–18.

    Google Scholar 

  • Khosa, M. K., Sidhu, B. S., & Benbi, D. K. (2011). Methane emission from rice fields in relation to management of irrigation water. Journal of Environmental Biology, 32(2), 169–172.

    PubMed  Google Scholar 

  • Kumar, S., Tiwari, S., Kumar, B., Vimal, B. K., Ranjan, R. D., & Azad, C. S. 2020. Residual effect of integrated nutrient management on yield and nutrients uptake of wheat under rice-wheat system. International Journal of Current Microbiology and Applied Sciences, 9, 701–711. https://doi.org/10.20546/ijcmas.2020.909.089

  • Ladha, J. K., Dawe, D., Pathak, H., Padre, A. T., Yadav, R. L., Singh, B., Singh, Y., Singh, P., Kundu, A. L., Sakal, R., Ram, N., Regmi, A. P., Gami, S. K., Bhandari, A. L., Amin, R., Yadav, C. R., Bhattarai, E. M., Das, S., Aggarwal, H. P., … Hobbs, P. R. (2003). How extensive are yield declines in long-term rice-wheat experiments in Asia? Field Crops Research, 81, 159–180. https://doi.org/10.1016/S0378-4290(02)00219-8

    Article  Google Scholar 

  • Lal, R. (2004). Soil carbon sequestration in India. Climate Change, 65, 277–296. https://doi.org/10.1023/B:CLIM.0000038202.46720.37

    Article  CAS  Google Scholar 

  • Liang, B., Yang, X., He, X., & Zhou, J. (2011). Effects of 17-year fertilization on soil microbial biomass C and N and soluble organic C and N in loessial soil during maize growth. Biology and Fertility of Soils, 47, 121–128. https://doi.org/10.1007/s00374-010-0511-7

    Article  CAS  Google Scholar 

  • Liang, X. Q., Li, H., Wang, S. X., Ye, Y. S., Ji, Y. J., Tian, G. M., van Kessel, C., & Linquist, B. A. (2013). Nitrogen management to reduce yield-scaled global warming potential in rice. Field Crop Research, 146, 66–74. https://doi.org/10.1016/j.fcr.2013.03.002

    Article  Google Scholar 

  • Ma, Y. C., Kong, X. W., Yang, B., Zhang, X. L., Yan, X. Y., Yang, J. C., & Xiong, Z. Q. (2013). Net global warming potential and greenhouse gas intensity of annual rice-wheat rotations with integrated soil-crop system management. Agriculture, Ecosystems & Environment, 164, 209–219. https://doi.org/10.1016/j.agee.2012.11.003

    Article  Google Scholar 

  • Mandal, S., Roy, S., Das, A., Ramkrushna, G. I., Lal, R., Verma, B. C., Kumar, A., Singh, R. K., & Layek, J. (2015). Energy efficiency and economics of rice cultivation systems under subtropical Eastern Himalaya. Energy for Sustainable Development, 28, 115–121. https://doi.org/10.1016/j.esd.2015.08.002

    Article  Google Scholar 

  • Merwin, H. D., & Peech, M. (1951). Exchangeability of Soil potassium in the sand, silt, and clay fractions as influenced by the nature of the complementary exchangeable cation. Soil Science Society of America Journal, 15, 125–128. https://doi.org/10.2136/SSSAJ1951.036159950015000C0026X

    Article  CAS  Google Scholar 

  • Mosier, A. R., Halvorson, A.D., Reule, C.A., & Liu, X.J. 2006. Net global warming potential and greenhouse gas intensity in net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern colorado irrigated cropping systems in northeastern Colorado.https://doi.org/10.2134/jeq2005.0232

  • Murphy, J., & Riley, J. P. (1962). A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta, 27, 31–36. https://doi.org/10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • Nisar, S., Benbi, D. K., & Toor, A. S. (2021). Energy budgeting and carbon footprints of three tillage systems in maize-wheat sequence of north-western Indo-Gangetic plains. Energy, 229, 120661. https://doi.org/10.1016/j.energy.2021.120661

    Article  CAS  Google Scholar 

  • Olsen, S. R., & Sommers, L. E. 1982. Phosphorus. In: Page A.L., Miller R.H., Keeney D.R. (Eds.) Methods of soil analysis. Part-2, 2nd ed. Soil Science Society of America Journal, Madison, W.I, pp 403–448

  • Olsen, S. R., Cole, C. V., Watanabe, F. S., & Dean, A. L. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, USA. 939, pp. 1–19

  • Poffenbarger, H. J., Olk, D. C., Cambardella, C., Kersey, J., Liebman, M., Mallarino, A., Six, J., & Castellano, M. J. (2019). Whole-profile soil organic matter content, composition, and stability under cropping systems that differ in belowground inputs. Agriculture, Ecosystems & Environment, 291, 106810. https://doi.org/10.1016/j.agee.2019.106810

    Article  CAS  Google Scholar 

  • Qin, Y., Liu, S., Guo, Y., Liu, Q., & Zou, J. (2010). Methane and nitrous oxide emissions from organic and conventional rice cropping systems in Southeast China. Biology and Fertility of Soils, 46, 825–834. https://doi.org/10.1007/s00374-010-0493-5

    Article  CAS  Google Scholar 

  • Rahman, M. M., Uddin, S., Jahangir, M. M. R., Solaiman, Z. M., Alamri, S., Siddiqui, M. H., & Islam, M. R. (2021). Integrated nutrient management enhances productivity and nitrogen use efficiency of crops in acidic and charland soils. Plants, 10(11), 2547. https://doi.org/10.3390/plants10112547.PMID:34834910;PMCID:PMC8621362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramamoorthy, B., & Velayutham, M. 1971. Soil Test-Crop Response Correlation Work in India. Rome

  • Raun, W. R., & Johnson, G. V. (1999). Improving nitrogen use efficiency for cereal production. Agronomy Journal, 91, 357–363. https://doi.org/10.2134/AGRONJ1999.00021962009100030001X

    Article  Google Scholar 

  • Sahai, S., Sharma, C., Singh, S. K., & Gupta, P. K. (2011). Assessment of trace gases, carbon and nitrogen emissions from field burning of agricultural residues in India. Nutrient Cycling in Agroecosystems, 89, 143–157. https://doi.org/10.1007/s10705-010-9384-2

    Article  CAS  Google Scholar 

  • Sapkota, T. B., Jat, M. L., Rana, D. S., Chhetri, A. K., Jat, H. S., Bijarniya, D., Sutaliya, J. M., Kumar, M., Singh, L. K., Jat, R. K., Kalvaniya, K., Prasad, G., Sidhu, H. S., Rai, M., Satyanarayana, T., & Majumdar, K. (2021). Crop nutrient management using Nutrient Expert improves yield, increases farmers’ income and reduces greenhouse gas emissions. Scientific Reports, 11, 1564. https://doi.org/10.1038/s41598-020-79883-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang, Q., Yang, X., Gao, C., Wu, P., Liu, Ji., Xu, Y., Shen, Q., Zou, J., & Guo, S. (2011). Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Global Change Biology, 17, 2196–2210. https://doi.org/10.1111/j.1365-2486.2010.02374.x

    Article  Google Scholar 

  • Sharma, S., Padbhushan, R., & Kumar, U. (2019). Integrated nutrient management in rice–wheat cropping system: an evidence on sustainability in the indian subcontinent through meta-analysis. Agronomy. https://doi.org/10.3390/AGRONOMY9020071

    Article  Google Scholar 

  • Singh, R. J., & Ahlawat, I. P. S. (2015). Energy budgeting and carbon footprint of transgenic cotton–wheat production system through peanut intercropping and FYM addition. Environmental Monitoring and Assessment, 187, 282. https://doi.org/10.1007/s10661-015-4516-4

    Article  CAS  PubMed  Google Scholar 

  • Singh, P., & Benbi, D. K. (2020). Nutrient management impacts on net ecosystem carbon budget and energy flow nexus in intensively cultivated cropland ecosystems of north-western India. Paddy Water Environment, 18, 697–715. https://doi.org/10.1007/s10333-020-00812-9

    Article  Google Scholar 

  • Singh, J., Mavi, M., & Sekhon, B. (2017). Soil test based fertilizer prescriptions through inductive cum targeted yield approach for wheat in alluvial soils of Northwest India. The Bioscan, 12(1), 295–299.

    CAS  Google Scholar 

  • Subbiah, B., & Asija, G. (1956). A rapid procedure for estimation of available nitrogen in soils—ScienceOpen. Current Science, 26, 259–260.

    Google Scholar 

  • Tilman, D., Balzer, C., Hill, J., & Befort, B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proceedings of the National Academy of Sciences, 108(50), 20260–20264. https://doi.org/10.1073/pnas.1116437108

    Article  Google Scholar 

  • Timsina, J., & Connor, D. G. (2001). Productivity and management of rice-wheat cropping systems: Issues and challenges. Field Crops Research. https://doi.org/10.1016/S0378-4290(00)00143-X

    Article  Google Scholar 

  • Tonitto, C., & Ricker-Gilbert, J. E. (2016). Nutrient management in African sorghum cropping systems: Applying meta-analysis to assess yield and profitability. Agronomy for Sustainable Development, 36, 1–19. https://doi.org/10.1007/S13593-015-0336-8

    Article  CAS  Google Scholar 

  • Walkley, A., Black, I. A., Walkley, A., & Black, I. A. (1934). An Examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–38. https://doi.org/10.1097/00010694-193401000-00003

    Article  CAS  Google Scholar 

  • Wassmann, R., Jagadish, S. V. K., Sumfleth, K., Pathak, H., Howell, G., Ismail, A., Serraj, R., Redona, E., Singh, R. K., & Heuer, S. (2009). Regional vulnerability of climate change impacts on asian rice production and scope for adaptation. Advances in Agronomy. https://doi.org/10.1016/S0065-2113(09)01003-7

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Indian Council of Agricultural Research, New Delhi, for providing the necessary funding for this project and Punjab Agricultural University, Ludhiana, for providing the necessary facilities to support the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jagdeep-Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagdeep-Singh, Nisar, S. & Mavi, M.S. Nutrient Use Efficiency and Greenhouse Gas Emissions Affected by Fertilization and Farmyard Manure Addition in Rice–Wheat System. Int. J. Plant Prod. 17, 35–47 (2023). https://doi.org/10.1007/s42106-023-00231-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-023-00231-w

Keywords

Navigation