Skip to main content

Advertisement

Log in

Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Conservation agriculture (CA) is an important aspect of the sustainable management of soybean [Glycine max (L.) Merrill] in production systems. This work evaluated the effects of soil management systems (SMS) combined with liming performed in 1986 and in 2008 on soil physical properties and soybean yield. The study used data from the 2008/09 until the 2015/16 soybean crop seasons from a long-term experiment settled in 1986 in Passo Fundo, southern Brazil. A split-plot design was used with the SMS as the main plots arranged in randomized blocks, and the cropping systems as the sub-plots randomized within SMS. The experiment evaluated the effects of four annually performed SMS: no-tillage (NT) and reduced-tillage (RT) (i.e. two CA systems), disk ploughing + disk harrowing (DPD) and moldboard ploughing + disk harrowing (MPD) [i.e. two conventional tillage (CT) systems]. Soil bulk density (ρs) and total, micro and macro porosities (φtotal, φmicro and φmacro) were evaluated in 2008 and in 2016 in the 0‒2.5 cm (L0 − 2.5) and 10‒12.5 cm (L10 − 12.5) soil layers. After 22 years of the beginning of the experiment and compared with the undisturbed soil (from a native forest area near to the experiment), all SMS increased ρs by an average of 28% in the L0 − 2.5 and 25% in the L10 − 12.5, decreased φtotal by 13% (except for NT) in the L0 − 2.5 and 17% in the L10 − 12.5, and decreased φmacro by 36% in the L10 − 12.5; moreover the CT systems decreased φmicro by 8.7% and 8.1% in the L0 − 2.5 and L10 − 12.5, respectively. At the end of this 22-year period, in the L0 − 2.5, ρs increased by 6% from NT to RT, and by 11% from NT to CT systems; φtotal decreased by 4%, and φmicro increased by 9% from NT to the other SMS. From 2008 to 2016, liming combined with each SMS modified soil properties in distinct manners: the combination increased ρs by 6% in NT (L0 − 2.5) and 5% in MPD (L10 − 12.5), decreased φtotal by 4% in MPD (L10 − 12.5), increased φmicro in all SMS by an average of 6% (L10 − 12.5), and reduced φmacro by an average of 24% in CT systems (L10 − 12.5). Soybean yield was more variable as function of growing season (average from 1866 to 4449 kg ha− 1) as compared to SMS treatment [average from 3088 kg ha− 1 (DPD) to 3276 kg ha− 1 (NT)]. Considering a global analysis of the eight crop seasons, soybean yield in NT was on average 6% greater than that of DPD, but NT grain yield was similar to RT and MPD systems. No-tillage favored soybean yield in higher yielding environments, while DPD had the greatest soybean yield and adaptability in lower yielding environments. These findings suggest that the NT system outperformed the other SMS by providing greater or similar soybean yields and being the least harmful to soil physical quality as compared to the undisturbed soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

CA:

Conservation agriculture

CT:

Conventional tillage systems

DPD:

Disk ploughing + disk harrowing

MPD:

Moldboard ploughing + disk harrowing

NT:

No-tillage

RT:

Reduced-tillage

SOC:

Soil organic carbon

SMS:

Soil management systems

US:

Undisturbed soil

ρs :

Soil bulk density

φmacro :

Soil macroporosity

φmicro :

Soil microporosity

φtotal :

Soil total porosity

References

  • Allam, M., Radicetti, E., Petroselli, V., & Mancinelli, R. (2021). Meta-analysis approach to assess the effects of soil tillage and fertilization source under different cropping systems. Agriculture, 11(9), 823. https://doi.org/10.3390/agriculture11090823

    Article  CAS  Google Scholar 

  • Anghinoni, G., Anghinoni, F. B. G., Tormena, C. A., Braccini, A. L., Mendes, I. C., Zancanaro, L., & Lal, R. (2021). Conservation agriculture strengthen sustainability of Brazilian grain production and food security. Land Use Policy, 108, 105591. https://doi.org/10.1016/j.landusepol.2021.105591

    Article  Google Scholar 

  • Auler, A. C., Pires, L. F., Santos, J. A. B., Caires, E. F., Borges, J. A. R., & Giarola, N. F. B. (2017). Effects of surface-applied and soil-incorporated lime on some physical attributes of a Dystrudept soil. Soil Use and Management, 33(1), 129–140. https://doi.org/10.1111/sum.12330

    Article  Google Scholar 

  • Battisti, R., Sentelhas, P. C., Pascoalino, J. A. L., Sako, H., Dantas, J. P. S., & Moraes, M. F. (2018). Soybean yield gap in the areas of yield contest in Brazil. International Journal of Plant Production, 12, 159–168. https://doi.org/10.1007/s42106-018-0016-0

    Article  Google Scholar 

  • Bellinaso, T. B., & Schneider, V. E. (2019). Perdas de solo para condição da parcela de wischmeier: estimativa para diferentes tipos de solo do estado do Rio Grande do Sul. Brazilian Journal of Development, 5(11), 22709–22717. https://doi.org/10.34117/bjdv5n11-005

    Article  Google Scholar 

  • Bertollo, A. M., Moraes, M. T., Franchini, J. C., Soltangheisi, A., Balbinot Junior, A. A., Levien, R., & Debiasi, H. (2021). Precrops alleviate soil physical limitations for soybean root growth in an Oxisol from southern Brazil. Soil and Tillage Research, 206, 104820. https://doi.org/10.1016/j.still.2020.104820

    Article  Google Scholar 

  • Blanco-Canqui, H., & Benjamin, J. G. (2013). Impacts of soil organic carbon on soil physical behavior. In S. Logsdon, M. Berli, & R. Horn (Eds.), Quantifying and modeling soil structure, v. 3 (pp. 11–40). Soil Science Society of America. https://doi.org/10.2134/advagricsystmodel3.c2

  • Blanco-Canqui, H., Stone, L. R., Schlegel, A. J., Lyon, D. J., Vigil, M. F., Mikha, M. M., Stahlman, P. W., & Rice, C. W. (2009). No-till induced increase in organic carbon reduces maximum bulk density of soils. Soil Science Society of America Journal, 73(6), 1871–1879. https://doi.org/10.2136/sssaj2008.0353

    Article  CAS  Google Scholar 

  • Blanco-Canqui, H., Wienhold, B. J., Jin, V. L., Schmer, M. R., & Kibet, L. C. (2017). Long-term tillage impact on soil hydraulic properties. Soil and Tillage Research, 170, 38–42. https://doi.org/10.1016/j.still.2017.03.001

    Article  Google Scholar 

  • Brouder, S. M., & Gomez-Macpherson, H. (2014). The impact of conservation agriculture on smallholder agricultural yields: A scoping review of the evidence. Agriculture Ecosystems & Environment, 187, 11–32. https://doi.org/10.1016/j.agee.2013.08.010

    Article  Google Scholar 

  • Buah, S. S. J., Ibrahim, H., Derigubah, M., Kuzie, M., Segtaa, J. V., Bayala, J., Zougmore, R., & Ouedraogo, M. (2017). Tillage and fertilizer effect on maize and soybean yields in the Guinea savanna zone of Ghana. Agriculture & Food Security, 6, 17. https://doi.org/10.1186/s40066-017-0094-8

    Article  Google Scholar 

  • Busari, M. A., Kukal, S. S., Kaur, A., Bhatt, R., & Dulazi, A. A. (2015). Conservation tillage impacts on soil, crop and the environment. International Soil and Water Conservation Research, 3(2), 119–129. https://doi.org/10.1016/j.iswcr.2015.05.002

    Article  Google Scholar 

  • Caires, E. F., Haliski, A., Bini, A. R., & Scharr, D. A. (2015). Surface liming and nitrogen fertilization for crop grain production under no-till management in Brazil. European Journal of Agronomy, 66, 41–53. https://doi.org/10.1016/j.eja.2015.02.008

    Article  CAS  Google Scholar 

  • Calonego, J. C., Raphael, J. P. A., Rigon, J. P. G., Neto, O., L., & Rosolem, C. A. (2017). Soil compaction management and soybean yields with cover crops under no-till and occasional chiseling. European Journal of Agronomy, 85, 31–37. https://doi.org/10.1016/j.eja.2017.02.001

    Article  Google Scholar 

  • Chen, J., Zhu, R., Zhang, Q., Kong, X., & Sun, D. (2019). Reduced-tillage management enhances soil properties and crop yields in a alfalfa-corn rotation: Case study of the Songnen Plain, China. Scientific Reports, 9, 17064. https://doi.org/10.1038/s41598-019-53602-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CONAB. Companhia Nacional de Abastecimento. (2021). Série histórica das safras – Soja. Brasília: CONAB

    Google Scholar 

  • Conradi Junior, E., Gonçalves Junior, A. C., Seidel, E. P., Ziemer, G. L., Zimmermann, J., Oliveira, V. H. D., Schwantes, D., & Zeni, C. D. (2020). Effects of liming on soil physical attributes: A review. Journal of Agricultural Science, 12(10), 278–286. https://doi.org/10.5539/jas.v12n10p278

    Article  Google Scholar 

  • Conyers, M., van der Rijt, V., Oates, A., Poile, G., Kirkegaard, J., & Kirkby, C. (2019). The strategic use of minimum tillage within conservation agriculture in southern New South Wales, Australia. Soil and Tillage Research, 193, 17–26. https://doi.org/10.1016/j.still.2019.05.021

    Article  Google Scholar 

  • Corbett, D., Wall, D. P., Lynch, M. B., & Tuohy, P. (2021). The influence of lime application on the chemical and physical characteristics of acidic grassland soils with impeded drainage. The Journal of Agricultural Science, 159(3–4), https://doi.org/10.1017/S0021859621000381. 206 – 215

  • Cruz, C. D. (2013). GENES – a software package for analysis in experimental statistics and quantitative genetics. Acta Scientiarum Agronomy, 35(3), 271–276. https://doi.org/10.4025/actasciagron.v35i3.21251

    Article  Google Scholar 

  • Dane, J. H., & Hopmans, J. W. (2002). Water retention and storage. In J. H. Dane, & G. C. Topp (Eds.), Methods of soil analysis. Part 4. Physical methods (3rd ed., pp. 671–720). Madison, WI: Soil Science Society of America

    Chapter  Google Scholar 

  • Danielson, R. E., & Sutherland, P. L. (1986). Porosity. In A. Klute (Ed.), Methods of soil analysis. Part 1. Physical and mineralogical methods (2nd ed., pp. 443–461). Madison, WI: Soil Science Society of America

    Google Scholar 

  • Eberhart, S. A., & Russell, W. A. (1966). Stability parameters for comparing varieties. Crop Science, 6(1), 36–40. https://doi.org/10.2135/cropsci1966.0011183X000600010011x

    Article  Google Scholar 

  • Edralin, D. A., Sigua, G. C., Reyes, M. R., Mulvaney, M. J., & Andrews, S. S. (2017). Conservation agriculture improves yield and reduces weeding activity in sandy soils of Cambodia. Agronomy for Sustainable Development, 37, 52. https://doi.org/10.1007/s13593-017-0461-7

    Article  Google Scholar 

  • FAO. Food and Agriculture Organization. (2011). Save and grow: A policymaker’s guide to the sustainable intensification of smallholder crop production. Rome: Food and Agriculture Organization of the United Nations

    Google Scholar 

  • FAO. Food and Agriculture Organization (2015). World reference base for soil resources 2014 - International soil classification system for naming soils and creating legends for soil maps (update 2015). Rome: Food and Agriculture Organization of the United Nations/IUSS Working Group WRB. (World Soil Resources Reports, 106)

  • FAO. Food and Agriculture Organization (2022). Countries by commodity. Rome: Food and Agriculture Organization of the United Nations/FAOSTAT. Retrieved August 16, 2022, from https://www.fao.org/faostat/en/#rankings/countries_by_commodity

  • Ferraz-Almeida, R. (2022). How does organic carbon operate in the pore distribution of fine-textured soils? Revista Brasileira de Engenharia Agrícola e Ambiental, 26(10), 734–746. https://doi.org/10.1590/1807-1929/agriambi.v26n10p743-746

    Article  Google Scholar 

  • Fontes, M. P. F., Gjorup, G. B., Alvarenga, R. C., & Nascif, P. G. S. (1995). Calcium salts and mechanical stress effects on water-dispersible clay of Oxisols. Soil Science Society of American Journal, 59(1), 224–227. https://doi.org/10.2136/sssaj1995.03615995005900010034x

    Article  CAS  Google Scholar 

  • Fontoura, S. M. V., Pias, O. H. C., Tiecher, T., Cherubin, M. R., Moraes, R. P., & Bayer, C. (2019). Effect of gypsum rates and lime with different reactivity on soil acidity and crop grain yields in a subtropical Oxisol under no-tillage. Soil and Tillage Research, 193, 27–41. https://doi.org/10.1016/j.still.2019.05.005

    Article  Google Scholar 

  • Franchini, J. C., Debiasi, H., Balbinot Junior, A. A., Tonon, B. C., Farias, J. R. B., Oliveira, M. C. N., & Torres, E. (2012). Evolution of crop yields in different tillage and cropping over two decades in southern Brazil. Field Crops Research, 137, 178–185. https://doi.org/10.1016/j.fcr.2012.09.003

    Article  Google Scholar 

  • Franzluebbers, A. J. (2011). Stratification of soil porosity and organic matter. In J. Gliński, J. Horabik, & J. Lipiec (Eds.), Encyclopedia of agrophysics. Encyclopedia of earth sciences series (pp. 858–861). Springer. https://doi.org/10.1007/978-90-481-3585-1_225

  • Fukumasu, J., Jarvis, N., Koestel, J., Kätterer, T., & Larsbo, M. (2022). Relations between soil organic carbon content and the pore size distribution for an arable topsoil with large variations in soil properties. European Journal of Soil Science, 73, e13212. https://doi.org/10.1111/ejss.13212

    Article  CAS  Google Scholar 

  • Gawęda, D., Nowak, A., Haliniarz, M., & Woźniak, A. (2020). Yield and economic effectiveness of soybean grown under different cropping systems. International Journal of Plant Production, 14, 475–485. https://doi.org/10.1007/s42106-020-00098-1

    Article  Google Scholar 

  • Govaerts, B., Fuentes, M., Mezzalama, M., Nicol, J. M., Deckers, J., Etchevers, J. D., Figueroa-Sandoval, B., & Sayre, K. D. (2007). Infiltration, soil moisture, root rot and nematode populations after 12 years of different tillage, residue and crop rotation managements. Soil and Tillage Research, 94(1), 209–219. https://doi.org/10.1016/j.still.2006.07.013

    Article  Google Scholar 

  • Gravetter, F. J., & Wallnau, L. B. (2015). Statistics for the behavioral sciences. Cengage Learning

  • Han, E., Kautz, T., Perkons, U., Lüsebrink, M., Pude, R., & Köpke, U. (2015). Quantification of soil biopore density after perennial fodder cropping. Plant and Soil, 394, 73–85. https://doi.org/10.1007/s11104-015-2488-3

    Article  CAS  Google Scholar 

  • Hansel, F. D., Amado, T. J. C., Diaz, R., Rosso, D. A., Nicoloso, L. H. M., F. T., & Schorr, M. (2017). Phosphorus fertilizer placement and tillage affect soybean root growth and drought tolerance. Agronomy Journal, 109(6), 2936–2944. https://doi.org/10.2134/agronj2017.04.0202

    Article  CAS  Google Scholar 

  • Haynes, R. J., & Naidu, R. (1998). Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutrient Cycling in Agroecosystems, 51, 123–137. https://doi.org/10.1023/A:1009738307837

    Article  Google Scholar 

  • Hussein, M. A., Antille, D. L., Kodur, S., Chen, G., & Tullberg, J. N. (2021). Controlled traffic farming delivers improved agronomic performance of wheat as a result of enhanced rainfall and fertiliser nitrogen use efficiency. Acta Agriculture Scandinavica Section B – Soil & Plant Science, 71(5), 377–398. https://doi.org/10.1080/09064710.2021.1903984

    Article  CAS  Google Scholar 

  • Jeřábek, J., Zumr, D., & Dostál, T. (2017). Identifying the plough pan position on cultivated soils by measurements of electrical resistivity and penetration resistance. Soil and Tillage Research, 174, 231–240. https://doi.org/10.1016/j.still.2017.07.008

    Article  Google Scholar 

  • Khan, S., Anwar, S., Sun, M., Shafiq, F., Khalilzadeh, R., & Gao, Z. (2021). Characterizing differences in soil water content and wheat yield in response to tillage and precipitation in the dry, normal, and wet years at the Loess Plateau. International Journal of Plant Production, 15, 655–668. https://doi.org/10.1007/s42106-021-00161-5

    Article  Google Scholar 

  • Kirchmann, H., & Gerzabek, M. H. (1999). Relationship between soil organic matter and micropores in a long-term experiment at Ultuna. Sweden Journal of Plant Nutrition and Soil Science, 162(5), 493–498. https://doi.org/10.1002/(SICI)1522-2624(199910)162:5%3C493::AID-JPLN493%3E3.0.CO;2-S

    Article  CAS  Google Scholar 

  • Karunakaran, V., & Behera, U. K. (2016). Tillage and residue management for improving productivity and resource-use efficiency in soybean (Glycine max) – wheat (Triticum aestivum) cropping system. Experimental Agriculture, 52(4), 617–634. https://doi.org/10.1017/S0014479715000289

    Article  Google Scholar 

  • Keller, T., Colombi, T., Ruiz, S., Schymanski, S. J., Weisskopf, P., Koestel, J., Sommer, M., Stadelmann, V., Breitenstein, D., Kirchgessner, N., Walter, A., & Or, D. (2021). Soil structure recovery following compaction: Short-term evolution of soil physical properties in a loamy soil. Soil Science Society of America Journal, 85(4), 1002–1020. https://doi.org/10.1002/saj2.20240

    Article  CAS  Google Scholar 

  • Köppen, W. (1931). Grundriss der Klimakunde. Berlin: Walter de Gruyter

    Book  Google Scholar 

  • Laclau, P. B., & Laclau, J. P. (2009). Growth of the whole root system for a plant crop of sugarcane under rainfed and irrigated environments in Brazil. Field Crops Research, 114(3), 351–360. https://doi.org/10.1016/j.fcr.2009.09.004

    Article  Google Scholar 

  • Li, Y., Li, Z., Cui, S., Jagadamma, S., & Zhang, Q. (2019). Residue retention and minimum tillage improve physical environment of the soil in croplands: A global meta-analysis. Soil and Tillage Research, 194, 104292. https://doi.org/10.1016/j.still.2019.06.009

    Article  Google Scholar 

  • Lollato, R. P., Lollato, M. A., & Edwards, J. T. (2012). Soil organic carbon replenishment through long-term no-till on a Brazilian family farm. Journal of Soil and Water Conservation, 67(3), 74A–76A. https://doi.org/10.2489/jswc.67.3.74A

    Article  Google Scholar 

  • Lollato, R. P., Edwards, J. T., & Zhang, H. (2013). Effect of alternative soil acidity amelioration strategies on soil pH distribution and wheat agronomic response. Soil Science Society of America Journal, 77(5), 1831–1841. https://doi.org/10.2136/sssaj2013.04.0129

    Article  CAS  Google Scholar 

  • Lollato, R. P., Ochsner, T. E., Arnall, D. B., Griffin, T. W., & Edwards, J. T. (2019). From field experiments to regional forecasts: Upscaling wheat grain and forage yield response to acidic soils. Agronomy Journal, 111(1), 287–302. https://doi.org/10.2134/agronj2018.03.0206

    Article  CAS  Google Scholar 

  • Lollato, R. P., Roozeboom, K., Lingenfelser, J. F., da Silva, C. L., & Sassenrath, G. (2020). Soft winter wheat outyields hard winter wheat in a subhumid environment: Weather drivers, yield plasticity, and rates of yield gain. Crop Science, 60(3), 1617–1633. https://doi.org/10.1002/csc2.20139

    Article  Google Scholar 

  • Luo, Z., Gan, Y., Niu, Y., Zhang, R., Li, L., Cai, L., & Xie, J. (2017). Soil quality indicators and crop yield under long-term tillage systems. Experimental Agriculture, 53(4), 497–511. https://doi.org/10.1017/S0014479716000521

    Article  Google Scholar 

  • Martínez, I., Chervet, A., Weisskopf, P., Sturny, W. G., Rek, J., & Keller, T. (2016). Two decades of no-till in the Oberacker long-term field experiment: Part II. Soil porosity and gas transport parameters. Soil and Tillage Research, 163, 130–140. https://doi.org/10.1016/j.still.2016.05.020

    Article  Google Scholar 

  • Masek, J., Kroulik, M., & Kumhala, F. (2010). Controlled traffic farming. In 9th International Scientific Conference Engineering for Rural Development (pp. 37–41). Jelgava: Latvia University of Agriculture. (Proceedings, Volume 9, May 27–28, 2010)

  • Mondal, S., Chakraborty, D., Bandyopadhyay, K., Aggarwal, P., & Rana, D. S. (2020). A global analysis on the impact of zero-tillage on soil physical condition and organic carbon content, and plant root response. Land Degradation & Development, 31(5), 557–567. https://doi.org/10.1002/ldr.3470

    Article  Google Scholar 

  • Moore, G. A. (2001). Soilguide: A handbook for understanding and managing agricultural soils. Perth: West Print Management. (Agriculture Western Australia Bulletin, 4343)

  • Moraes, M. T., Debiasi, H., Carlesso, R., Franchini, J. C., Silva, V. R., & Luz, F. B. (2016). Soil physical quality on tillage and cropping systems after two decades in the subtropical region of Brazil. Soil and Tillage Research, 155, 351–362. https://doi.org/10.1016/j.still.2015.07.015

    Article  Google Scholar 

  • Moraes, M. T., Debiasi, H., Franchini, J. C., Bonetti, J. A., Levien, R., Schnepf, A., & Leitner, D. (2019). Mechanical and hydric stress effects on maize root system development at different soil compaction levels. Frontiers in Plant Science, 10, 1358. https://doi.org/10.3389/fpls.2019.01358

    Article  PubMed  PubMed Central  Google Scholar 

  • Moraes, M. T., Debiasi, H., Franchini, J. C., Mastroberti, A. A., Levien, R., Leitner, D., & Schnepf, A. (2020). Soil compaction impacts soybean root growth in an Oxisol from subtropical Brazil. Soil and Tillage Research, 200, 104611. https://doi.org/10.1016/j.still.2020.104611

    Article  Google Scholar 

  • Muoni, T., Koomson, E., Öborn, I., Marohn, C., Watson, C. A., Bergkvist, G., Barnes, A., Cadisch, G., & Duncan, A. (2020). Reducing soil erosion in smallholder farming systems in east Africa through the introduction of different crop types. Experimental Agriculture, 56(2), 183–195. https://doi.org/10.1017/S0014479719000280

    Article  Google Scholar 

  • Nunes, M. R., Denardin, J. E., Pauletto, E. A., Faganello, A., & Pinto, L. F. P. (2015). Mitigation of clayey soil compaction managed under no-tillage. Soil and Tillage Research, 148, 119–126. https://doi.org/10.1016/j.still.2014.12.007

    Article  Google Scholar 

  • Page, K. L., Dang, Y. P., & Dalal, R. C. (2020). The ability of conservation agriculture to conserve soil organic carbon and the subsequent impact on soil physical, chemical, and biological properties and yield. Frontiers in Sustainable Food Systems, 4, 31. https://doi.org/10.3389/fsufs.2020.00031

    Article  Google Scholar 

  • Patrignani, A., Lollato, R. P., Ochsner, T. E., Godsey, C. B., & Edwards, J. T. (2014). Yield gap and production gap of rainfed winter wheat in the Southern Great Plains. Agronomy Journal, 106(4), 1329–1339. https://doi.org/10.2134/agronj14.0011

    Article  Google Scholar 

  • Pittelkow, C. M., Linquist, B. A., Lundy, M. E., Liang, X., van Groenigen, K. J., Lee, J., van Gestel, N., Six, J., Venterea, R. T., & van Kessel, C. (2015). When does no-till yield more? A global meta-analysis. Field Crops Research, 183, 156–168. https://doi.org/10.1016/j.fcr.2015.07.020

    Article  Google Scholar 

  • Pratap, A., Gupta, S. K., Kumar, J., Mehandi, S., & Pandey, V. R. (2016). Soybean. In S. K. Gupta (Ed.), Breeding oilseed crops for sustainable production – Opportunities and constraints (1st ed., pp. 293–315). Cambridge: Academic Press

    Chapter  Google Scholar 

  • Ralisch, R., Miranda, T. M., Okumura, R. S., Barbosa, G. M. C., Guimarães, M. F., Scopel, E., & Balbino, L. C. (2008). Resistência à penetração de um Latossolo Vermelho Amarelo do Cerrado sob diferentes sistemas de manejo. Revista Brasileira de Engenharia Agrícola e Ambiental, 12(4), 381–384. https://doi.org/10.1590/S1415-43662008000400008

    Article  Google Scholar 

  • Ram, H., Singh, Y., Saini, K. S., Kler, D. S., & Timsina, J. (2013). Tillage and planting methods effects on yield, water use efficiency and profitability of soybean–wheat system on a loamy sand soil. Experimental Agriculture, 49(4), 524–542. https://doi.org/10.1017/S0014479713000264

    Article  Google Scholar 

  • Rhoton, F. E. (2000). Influence of time on soil response to no-till practices. Soil Science Society of America Journal, 64(2), 700–709. https://doi.org/10.2136/sssaj2000.642700x

    Article  CAS  Google Scholar 

  • Roose, E., & Barthès, B. (2001). Organic matter management for soil conservation and productivity restoration in Africa: a contribution from Francophone research. Nutrient Cycling in Agroecosystems, 61, 159–170. https://doi.org/10.1023/A:1013349731671

    Article  Google Scholar 

  • Sadras, V. O., Reynolds, M. P., de la Vega, A. J., Petrie, P. R., & Robinson, R. (2009). Phenotypic plasticity of yield and phenology in wheat, sunflower and grapevine. Field Crops Research, 110(3), 242–250. https://doi.org/10.1016/j.fcr.2008.09.004

    Article  Google Scholar 

  • Sadras, V. O., Villalobos, F. J., & Fereres, F. (2016). Crop development and growth. In F. Villalobos, & E. Fereres (Eds.), Principles of agronomy for sustainable agriculture (pp. 141–158). Springer. https://doi.org/10.1007/978-3-319-46116-8_11

  • Santos, H. P., Fontaneli, R. S., Silva, S. R., Santi, A., Verdi, A. C., & Vargas, A. M. (2015). Long-term effects of four tillage systems and weather conditions on soybean yield and agronomic characteristics in Brazil. Australian Journal of Crop Science, 9(5), 445–452

    Google Scholar 

  • Santos, H. P., & Tomm, G. O. (2003). Nutrient availability and organic matter content as affected by cropping systems and soil management. Ciência Rural, 33(3), 477–486. https://doi.org/10.1590/S0103-84782003000300013

    Article  Google Scholar 

  • Scarpare, F. V., van Lier, Q. J., Camargo, L., Pires, R. C. M., Ruiz-Corrêa, S. T., Bezerra, A., Gava, H. F., G. J. C., & Dias, C. T. S. (2019). Tillage effects on soil physical condition and root growth associated with sugarcane water availability. Soil and Tillage Research, 187, 110–118. https://doi.org/10.1016/j.still.2018.12.005

    Article  Google Scholar 

  • Schjønning, P., van den Akker, J. J. H., Keller, T., Greve, M. H., Lamandé, M., Simojoki, A., Stettler, M., Arvidsson, J., & Breuning-Madsen, H. (2015). Driver-Pressure-State-Impact-Response (DPSIR) analysis and risk assessment for soil compaction – a European perspective. Advances in Agronomy, 133, 183–237. https://doi.org/10.1016/bs.agron.2015.06.001

    Article  Google Scholar 

  • Scopel, E., Triomphe, B., Affholder, F., Silva, F. A. M., Corbeels, M., Xavier, J. H. V., Lahmar, R., Recous, S., Bernoux, M., Blanchart, E., Mendes, I. C., & De Tourdonnet, S. (2013). Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agronomy for Sustainable Development, 33, 113–130. https://doi.org/10.1007/s13593-012-0106-9

    Article  Google Scholar 

  • Shen, Y., Zhang, T., Cui, J., Chen, S., Han, H., & Ning, T. (2021). Increase in maize yield and soil aggregate-associated carbon in North China due to long-term conservation tillage. Experimental Agriculture, 57(4), 270–281. https://doi.org/10.1017/S001447972100020X

    Article  Google Scholar 

  • Silva, S. R., Barros, N. F., & Costa, L. M. (2006). Physical attributes of two Oxisols affected by soil compaction. Revista Brasileira de Engenharia Agrícola e Ambiental, 10(4), 842–847. https://doi.org/10.1590/S1415-43662006000400009

    Article  Google Scholar 

  • Silva, S. R., Barros, N. F., Costa, L. M., & Leite, F. P. (2008). Soil compaction and Eucalyptus growth in response to forwarder traffic intensity and load. Revista Brasileira de Ciência do Solo, 32(3), 921–932. https://doi.org/10.1590/S0100-06832008000300002

    Article  Google Scholar 

  • Silva, S. R., Santos, H. P., Lollato, R. P., Santi, A., & Fontaneli, R. S. (2022). Long-term effects of tillage systems on liming efficiency, soil chemical properties and wheat yield in Southern Brazil. Soil Research, 60(5–6), 497–510. https://doi.org/10.1071/SR21023

    Article  CAS  Google Scholar 

  • Singh, J., Wang, T., Kumar, S., Xu, Z., Sexton, P., Davis, J., & Bly, A. (2021). Crop yield and economics of cropping systems involving different rotations, tillage, and cover crops. Journal of Soil and Water Conservation, 76(4), 340–348. https://doi.org/10.2489/jswc.2021.00117

    Article  Google Scholar 

  • Soane, B. D. (1990). The role of organic matter in soil compactibility: A review of some practical aspects. Soil and Tillage Research, 16(1–2), 179–201. https://doi.org/10.1016/0167-1987(90)90029-D

    Article  Google Scholar 

  • Somasundaram, J., Sinha, N. K., Dalal, R. C., Lal, R., Mohanty, M., Naorem, A. K., Hati, K. M., Chaudhary, R. S., Biswas, A. K., Patra, A. K., & Chaudhari, S. K. (2020). No-till farming and conservation agriculture in South Asia – Issues, challenges, prospects and benefits. Critical Reviews in Plant Sciences, 39(3), 236–279. https://doi.org/10.1080/07352689.2020.1782069

    Article  CAS  Google Scholar 

  • Su, Y., Gabrielle, B., & Makowski, D. (2021). A global dataset for crop production under conventional tillage and no tillage systems. Scientific Data, 8, 33. https://doi.org/10.1038/s41597-021-00817-x

    Article  PubMed  PubMed Central  Google Scholar 

  • Tebrügge, F., & Düring, R. A. (1999). Reducing tillage intensity – a review of results from a long-term study in Germany. Soil and Tillage Research, 53(1), 15–28. https://doi.org/10.1016/s0167-1987(99)00073-2

    Article  Google Scholar 

  • Tedesco, M. J., Gianello, C., Bissani, C., Bohnen, H., & Volkweiss, S. J. (1995). Análise de solo, plantas e outros materiais. Porto Alegre: Universidade Federal do Rio Grande do Sul. (Boletim Técnico, 5)

    Google Scholar 

  • Thornthwaite, C. W., & Mather, J. R. (1955). The water balance. Centerton: Drexel Institute of Technology–Laboratory of Climatology

    Google Scholar 

  • Tolimir, M., Kresović, B., Životić, L., Dragović, S., Dragović, R., Sredojević, Z., & Gajić, B. (2020). The conversion of forestland into agricultural land without appropriate measures to conserve SOM leads to the degradation of physical and rheological soil properties. Scientific Reports, 10, 13668. https://doi.org/10.1038/s41598-020-70464-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Tormena, C. A., Roloff, G., & Sá, J. C. M. (1998). Propriedades físicas do solo sob plantio direto influenciados por calagem, preparo inicial e tráfego. Revista Brasileira de Ciência do Solo, 22(2), 301–309. https://doi.org/10.1590/S0100-06831998000200016

    Article  Google Scholar 

  • Vizioli, B., Cavalieri-Polizeli, K. M. V., Tormena, C. A., & Barth, G. (2021). Effects of long-term tillage systems on soil physical quality and crop yield in a Brazilian Ferralsol. Soil and Tillage Research, 209, 104935. https://doi.org/10.1016/j.still.2021.104935

    Article  Google Scholar 

  • von Uexküll, H. R., & Mutert, E. (1995). Global extent, development and economic impact of acid soils. Plant and Soil, 171, 1–15. https://doi.org/10.1007/BF00009558

    Article  Google Scholar 

  • Williams, A., Jordan, N. R., Smith, R. G., Hunter, M. C., Kammerer, M., Kane, D. A., Koide, R. T., & Davis, A. S. (2018). A regionally-adapted implementation of conservation agriculture delivers rapid improvements to soil properties associated with crop yield stability. Scientific Reports, 8, 8467. https://doi.org/10.1038/s41598-018-26896-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Evandro Ademir Lampert, Cedenir Medeiros Scheer, Itamar Pacheco do Amarante, Luiz Carlos André Katzwinkel, and Luiz Vilson de Oliveira for their field technical support; Ana Maria Vargas, Amauri Colet Verdi, Maiara Fiorentin, and Natália Prezoto for their support in soil sampling and soybean yield evaluations; and statistician Marcio Nicolau for his guidance on statistical analysis. We also are grateful to Dr Sirio Wiethölter for the soil physical analyzes performed in the Laboratory of Soil Fertility and Plant Nutrition at the National Wheat Research Center (Embrapa Trigo). This work was approved for publication by the Editorial Board of the Embrapa Trigo.

Funding

This work was funded by the Brazilian Agricultural Research Corporation (Empresa Brasileira de Pesquisa Agropecuária – Embrapa), under grant SEG–03.13.00.040, as part of the ‘Carbon Stocks in Soil and Dynamics of Greenhouse Gases in Different Types of Soil Management and Crop Rotation in Southern Brazil’ project.

Author information

Authors and Affiliations

Authors

Contributions

Sérgio Ricardo Silva: statistical analysis, graphic design, analysis and interpretation, writing – original draft preparation, writing – review and editing. Henrique Pereira dos Santos: conceptualization, study design, methodology, data acquisition, supervision, validation, funding acquisition. Rômulo Pisa Lollato: visualization, writing – review and editing. Anderson Santi: data acquisition, visualization. Renato Serena Fontaneli: conceptualization, visualization.

Corresponding author

Correspondence to Sérgio Ricardo Silva.

Ethics declarations

Conflict of Interest

The authors declare that the research was carried out in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Consent for Publication

All the authors have given their consent for the publication of this manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, S.R., dos Santos, H.P., Lollato, R.P. et al. Soybean Yield and Soil Physical Properties as Affected by Long-Term Tillage Systems and Liming in Southern Brazil. Int. J. Plant Prod. 17, 65–79 (2023). https://doi.org/10.1007/s42106-022-00217-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-022-00217-0

Keywords

Navigation