Skip to main content

Advertisement

Log in

Modeling the Influence of Seasonal Climate Variability on Soybean Yield in a Temperate Environment: South Korea as a Case Study

  • Research
  • Published:
International Journal of Plant Production Aims and scope Submit manuscript

Abstract

Korea’s agriculture system has been significantly influenced by climate change over the years. The uncertainties of climate change and variability are important considerations to respond to increasing food demand around the world. There is limited information on the impact of climate variability on soybean yield in temperate regions generally, and Korea in particular. This study, therefore, sought to identify the impact of seasonal climate variability on soybean yield in Korea. Specifically, the study analyzed soybean yield characteristics in Korea’s temperate climate using statistical techniques, evaluated climate features over the study period (1979–2016) using the Mann–Kendall test and Sen’s slope analysis, analyzed the relationship between yield and climatic variables through correlation analysis, and built a statistical model using significant climatic variables. Results showed that climate variability significantly influenced soybean yield in Korea with an R2 value of 0.455 and significant at P ≤ 0.05, implying that the climatic variables accounted for 45.5% of the variation in soybean yield. The results confirm the significant role played by climate on the yield of soybean in Korea, thus assisting in the development of adequate adaptation and mitigation strategies by farmers and policy makers alike, based on this credible knowledge. In addition, the soybean crop has increasingly become an important crop in Korea over the years, hence research as this, geared towards improvement of soybean production in the face of changing climate is of utmost priority as we aim to sustain and improve food security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adelodun, B., & Choi, K. S. (2020). Impact of food wastage on water resources and GHG emissions in Korea: A trend-based prediction modeling study. Journal of Cleaner Production, 271, 122562

    Article  Google Scholar 

  • Adelodun, B., Kim, S. H., & Choi, K. S. (2021a). Assessment of food waste generation and composition among Korean households using novel sampling and statistical approaches. Waste Management, 122, 71–80

    Article  Google Scholar 

  • Adelodun, B., Kim, S. H., Odey, G., & Choi, K. S. (2021b). Assessment of environmental and economic aspects of household food waste using a new Environmental-Economic Footprint (EN-EC) index: A case study of Daegu. South Korea Science of The Total Environment, 776, 145928

    Article  CAS  Google Scholar 

  • Ahmad, M. J., Choi, K. S., Cho, G. H., & Kim, S. H. (2019). Future wheat yield variabilities and water footprints based on the yield sensitivity to past. Climate Conditions Agronomy, 9, 744.

    Google Scholar 

  • Ali, S., Liu, Y., Ishaq, M., Shah, T., Ilyas, A., & Din, I. U. (2017). Climate change and its impact on the yield of major food crops. Evidence from Pakistan Foods, 6, 39

    Google Scholar 

  • Aparecido, L. E. O., Torsoni, G. B., da Silva Cabral, J., de Meneses, K. C., Lorençone, J. A., & Lorençone, P. A. (2021). Modeling the impact of agrometeorological variables on soybean yield in the Mato Grosso Do Sul: 2000–2019 Environment. Development and Sustainability, 23, 5151–5164

    Article  Google Scholar 

  • Azad, N., Behmanesh, J., Rezaverdinejad, V., & Tayfeh Rezaie, H. (2018). Climate change impacts modeling on winter wheat yield under full and deficit irrigation in Myandoab-Iran Archives of Agronomy. Archives of Agronomy and Soil Science, 64, 731–746.

    Article  Google Scholar 

  • Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals Plant. Cell Environment International, 31, 11–38.

    Google Scholar 

  • Dhungana, S. K., et al. (2019). Evaluation of flooding tolerance of soybean (Glycine max L. Merr.) in greenhouse under upland and paddy soil conditions. Journal of Crop Science and Biotechnology, 22, 283–290.

    Article  Google Scholar 

  • Doğan, H. G., Kan, A. J. E., & Development, S. (2019). The effect of precipitation and temperature on wheat yield in Turkey: a panel FMOLS and panel. VECM Approach, 21, 447–460.

    Google Scholar 

  • Hatfield, J. L., & Prueger, J. H. (2015). Temperature extremes: Effect on plant growth and development. Weather and Climate Extremes, 10, 4–10.

    Article  Google Scholar 

  • Huang, Y., & Brown, M. E. (2019). Advancing to the next generation of precision agriculture.  Agriculture & Food Systems to 2050, 2050, 285–226.

    Google Scholar 

  • Jiang, L., Li, S., Li, X., Zhang, L-q, DU C-y. (2011). Impacts of climate change on development and yield of soybean over past 30 years in Heilongjiang. Province Soybean Science, 30, 921–926.

    Google Scholar 

  • Kim, H. Y., Ko, J., Kang, S., & Tenhunen, J. (2013). Impacts of climate change on paddy rice yield in a temperate climate. Global Change Biology, 19, 548–562.

    Article  Google Scholar 

  • Kim, M. K., & Pang, A. (2009). Climate change impact on rice yield and production risk. Journal of Rural Development/Nongchon-Gyeongje, 32, 17–29

    Google Scholar 

  • Kim, S. M., Kang, M. S., & Jang, M. W. (2018). Assessment of agricultural drought vulnerability to climate change at a municipal level in South Korea. Paddy Water Environment, 16, 699–714

    Article  Google Scholar 

  • Kucharik, C. J., & Serbin, S. P. (2008). Impacts of recent climate change on Wisconsin corn and soybean yield trends. Environmental Research Letters, 3, 034003. doi:https://doi.org/10.1088/1748-9326/3/3/034003

    Article  Google Scholar 

  • Lee, C., et al. (2015). Soybean [Glycine max (L.) Merrill]: Importance as a crop and pedigree reconstruction of Korean varieties. Plant Breeding and Biotechnology, 9, 179–196.

    Article  Google Scholar 

  • Lee, C. K., Kim, J., Shon, J., Yang, W. H., Yoon, Y. H., Choi, K. J., & Kim, K. S. (2012). Impacts of climate change on rice production and adaptation method in Korea as evaluated by simulation study Korean. Journal of Agricultural Forest Meteorology, 14, 207–221

    Article  Google Scholar 

  • Lee, M. S., et al. (2013). How do extreme wet events affect rice quality in a changing climate? Agriculture, Ecosystems and Environment, 171, 47–54.

    Article  Google Scholar 

  • Lee, S., Jung, K. Y., Chun, H. C., Choi, Y. D., & Kang, H. W. (2018). Response of soybean (Glycine max L.) to subsurface drip irrigation with different dripline placements at a sandy-loam soil Korean. Journal of Soil Science Fertilizer, 51, 79–89.

    CAS  Google Scholar 

  • Lee, Y. H., Sang, W. G., Baek, J. K., Kim, J. H., Shin, P., Seo, M. C., & Cho, J. I. (2020). The effect of concurrent elevation in CO2 and temperature on the growth, photosynthesis, and yield of potato crops. PloS One, 15, e0241081.

    Article  CAS  Google Scholar 

  • Li, J., Sun, J., Li, M., Zhao, X., & Zhao, L. (2021). Genetic analysis and QTL mapping of growth period traits and plant height traits in soybean recombinant inbred lines from Dongnong 47× PI 317334-B. Oil Crop Science, 6, 66–73

    Article  Google Scholar 

  • Li, M. W., et al. (2020). Impacts of genomic research on soybean improvement. East Asia, 133, 1655–1678.

    Google Scholar 

  • Lindner, S., et al. (2015). Carbon dioxide exchange and its regulation in the main agro-ecosystems of Haean catchment in South Korea Agriculture. Ecosystems and Environment, 199, 132–145

    Article  CAS  Google Scholar 

  • Lobell, D. B., & Field, C. B. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters, 2, 014002.

    Article  Google Scholar 

  • Lobell, D. B., Ortiz-Monasterio, J. I., Asner, G. P., Matson, P. A., Naylor, R. L., & Falcon, W. P. (2005). Analysis of wheat yield and climatic trends in Mexico. Field Crops Research, 94, 250–256.

    Article  Google Scholar 

  • Mumo, L., Yu, J., & Fang, K. (2018). Assessing impacts of seasonal climate variability on maize yield in Kenya International. Journal of Plant Production, 12, 297–307

    Article  Google Scholar 

  • Novikova, L. Y., Bulakh, P. P., Nekrasov, A. Y., & Seferova, I. V. (2020). Soybean Response to Weather and Climate Conditions in the Krasnodar and Primorye Territories of Russia over the. Past Decades Agronomy, 10, 1278

    Article  Google Scholar 

  • Odey, G., Adelodun, B., Kim, S. H., & Choi, K. S. (2021b). Conflicting Drivers of Virtual Water Trade: A Review Based on the “Virtual Water Concept”. Water Economics and Policy, 7, 2150011

    Article  Google Scholar 

  • Oh, I., Wehrmeyer, W., & Mulugetta, Y. J. E. P. (2010). Decomposition analysis and mitigation strategies of CO2 emissions from energy consumption in. South Korea, 38, 364–377

    CAS  Google Scholar 

  • Porter, J. R., & Semenov, M. A. (2005). Crop responses to climatic variation. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 2021–2035

    Article  Google Scholar 

  • Poudel, S., & Shaw, R. (2016). The relationships between climate variability and crop yield in a mountainous environment: A case study in Lamjung District. Nepal Climate, 4, 13

    Article  Google Scholar 

  • Rahman, M. A., Kang, S., Nagabhatla, N., & Macnee, R. (2017). Impacts of temperature and rainfall variation on rice productivity in major ecosystems of Bangladesh. Agriculture Food Security, 6, 1–11

    Article  CAS  Google Scholar 

  • Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63, 1379–1389. doi:https://doi.org/10.1080/01621459.1968.10480934

    Article  Google Scholar 

  • Taylor, K. E. (2001). Summarizing multiple aspects of model performance in a single diagram. Journal of Geophysical Research: Atmospheres, 106(D7), 7183–7192

    Article  Google Scholar 

  • Yoon, C. Y., Kim, S., Cho, J., & Kim, S. (2021). Modeling the Impacts of Climate Change on Yields of Various Korean Soybean. Sprout Cultivars Agronomy, 11, 1590

    Article  CAS  Google Scholar 

  • Yoon, E. J., et al. (2019). Modeling spatial climate change landuse adaptation with multi-objective genetic algorithms to improve resilience for rice yield and species richness and to mitigate disaster risk. Environmental Research Letters, 14, 024001.

    Article  Google Scholar 

  • Chang-Gil, K. (2008). Impacts of Climate Change on the Agricultural Sector in Korea. Research Report

  • Ferrante, A., & Mariani, L. (2018). Agronomic management for enhancing plant tolerance to abiotic stresses: High and low values of temperature, light intensity, and relative humidity. Horticulturae 4:21

  • Herrero, M. T., et al. (2010). Climate variability and climate change and their. impacts on Kenya’s agricultural sector

  • Kendall, M. (1975). Rank correlation methods (4th ed.). charles griffin San Francisco. CA 8

  • Liang, X. Z., et al. (2017). Determining climate effects on US total agricultural productivity Proceedings of the National Academy of Sciences 114:E2285-E2292

  • Lin, T. S., Song, Y., Lawrence, P., Kheshgi, H. S., & Jain, A. K. (2021). Worldwide Maize and Soybean Yield Response to Environmental and Management Factors Over the 20th and 21st CenturiesJournal of Geophysical Research: Biogeosciences126:e2021JG006304

  • Mann, H. B. (1945). Nonparametric tests against trend Econometrica: Journal of the Econometric Society:245–259

  • Mulungu, K., Tembo, G., Bett, H., & Ngoma, H. (2021). Climate change and crop yields in Zambia: historical effects and future projections Environment, Development Sustainability:1–22

  • Nasrullah, M., Rizwanullah, M., Yu, X., Jo, H., Sohail, M. T., & Liang, L. (2021). Autoregressive distributed lag (ARDL) approach to study the impact of climate change and other factors on rice production in South Korea. Journal of Water Climate Change

  • Odey, G., Adelodun, B., Kim, S. H., & Choi, K. S. J. S. (2021a). Status of Environmental Life Cycle Assessment (LCA): A Case Study of South Korea 13:6234

  • Park, J. K., Das, A., & Park, J. H. (2018). Integrated model for predicting rice yield with climate change International Agrophysics 32

  • Rong, L., Duan, X., Gu, Z., & Feng, D. (2020). Climatic and environmental drivers on temporal-spatial variations of grain meteorological yield in high mountainous region Archives ofAgronomy and Soil Science:1–15

  • Roriz, M., Carvalho, S. M., & Vasconcelos, M. W. (2014). High relative air humidity influences mineral accumulation and growth in iron deficient soybean plants Frontiers in plant science 5:726

  • Schlenker, W., & Roberts, M. J. (2008). Estimating the impact of climate change on crop yields: The importance of nonlinear temperature effects. National Bureau of Economic Research

  • Stocker, T. (2014). Climate change 2013: the physical science basis: Working Group I contribution to the Fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge university press

  • Won, J., Babu, S. C., & Rana, A. (2019). Building a climate change-resilient food system in Korea: The case of extension and technology dissemination services (1861 vol.). Intl Food Policy Res Inst

  • World-Bank (2021). Agriculture, forestry, and fishing, value added (% of GDP) - Korea, Rep. https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS?name_desc=false&locations=KR. Accessed 27 Sept 2021

  • Arefinia, A., Bozorg-Haddad, O., Ahmadaali, K., Bazrafshan, J., Zolghadr-Asli, B., & Chu, X. (2021). Estimation of geographical variations in virtual water content and crop yield under climate change:. Development: comparison of three data mining approaches Environment Sustainability:1–19

  • Sustainability:1–19

  • FAO (1998). Crop evapotranspiration - Guidelines for computing crop water requirements - FAO Irrigation and drainage paper 56.  https://www.fao.org/3/x0490e/x0490e00.htm#Contents. Accessed 12 Oct 2021

  • FAO (2018). South Korea Production.  https://www.fao.org/faostat/en/#data/QC/. Accessed on 25 Oct 2021

  • FAO (2020). Crops and livestock products.  http://www.fao.org/faostat/en/#data/QCL. Accessed 30 May 2021

  • FAO (2021). Land & Water, Crop Information: Soybean.  https://www.fao.org/land-water/databases-and-software/crop-information/soybean/en/. Accessed 14 Oct 2021

  • KMA (2020). Korea Meteorological Administration Weather Data.  http://www.weather.go.kr/weather/climate/ Accessed 31 May 2021

  • KOSIS (2020). Agriculture and Forestry Statistical Database. Available online: https://kosis.kr/statisticsList/statisticsListIndex.do?vwcd=MT_ZTITLE&menuId=M_01_01#content-group. (accessed on 30 May 2021)

  • NICS (2020). Soybean cultural practices.  https://www.nics.go.kr/contents/page.do?m=700000172&homepageSeCode=english&contentsId=86. Accessed 30 May 2021

  • USDA (2018). U.S. Agricultural Export Opportunities in South Korea.  https://www.fas.usda.gov/data/us-agricultural-export-opportunities-south-korea. Accessed 27 Sept 2021

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung Sook Choi.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Odey, G., Adelodun, B., Cho, G. et al. Modeling the Influence of Seasonal Climate Variability on Soybean Yield in a Temperate Environment: South Korea as a Case Study. Int. J. Plant Prod. 16, 209–222 (2022). https://doi.org/10.1007/s42106-022-00188-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42106-022-00188-2

Keywords

Navigation